import cv2 import numpy as np from collections import deque, defaultdict import time # پارامترها trace_len = 20 min_area = 500 # حافظه object_traces = defaultdict(lambda: deque(maxlen=trace_len)) long_term_memory = defaultdict(list) next_object_id = 1 object_centroids = {} def count_direction_changes(trace): count = 0 for i in range(2, len(trace)): v1 = np.array(trace[i - 1]) - np.array(trace[i - 2]) v2 = np.array(trace[i]) - np.array(trace[i - 1]) if np.dot(v1, v2) < 0: count += 1 return count def extract_features(trace): if len(trace) < 2: return [0, 0, 0, 0] dx = trace[-1][0] - trace[0][0] dy = trace[-1][1] - trace[0][1] total_distance = sum(np.linalg.norm(np.array(trace[i]) - np.array(trace[i-1])) for i in range(1, len(trace))) avg_speed = total_distance / (len(trace) + 1e-6) direction_changes = count_direction_changes(trace) return [dx, dy, avg_speed, direction_changes] def ai_brain(trace, memory): if len(trace) < 3: return "Unknown" dx, dy, speed, changes = extract_features(trace) if len(memory) >= 5 and memory.count("Erratic") > 3: return "Suspicious" if speed > 150 and changes > 4: return "Erratic" if speed < 5 and changes == 0: return "Idle" return "Normal" def get_color(i): np.random.seed(i) return tuple(int(x) for x in np.random.randint(100, 255, 3)) # آماده‌سازی دوربین cap = cv2.VideoCapture(0) ret, prev = cap.read() prev_gray = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY) prev_gray = cv2.GaussianBlur(prev_gray, (21, 21), 0) while True: ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray_blur = cv2.GaussianBlur(gray, (21, 21), 0) # محاسبه اختلاف فریم‌ها delta = cv2.absdiff(prev_gray, gray_blur) thresh = cv2.threshold(delta, 25, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) current_centroids = [] for cnt in contours: if cv2.contourArea(cnt) < min_area: continue (x, y, w, h) = cv2.boundingRect(cnt) cx, cy = x + w // 2, y + h // 2 current_centroids.append((cx, cy)) matched_id = None # تطبیق با شیء قبلی for object_id, last_centroid in object_centroids.items(): if np.linalg.norm(np.array([cx, cy]) - np.array(last_centroid)) < 50: matched_id = object_id break if matched_id is None: matched_id = next_object_id next_object_id += 1 object_centroids[matched_id] = (cx, cy) object_traces[matched_id].append((cx, cy)) trace = object_traces[matched_id] behavior = ai_brain(trace, [m['status'] for m in long_term_memory[matched_id]]) long_term_memory[matched_id].append({'status': behavior, 'timestamp': time.time()}) color = get_color(matched_id) cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) cv2.putText(frame, f"ID {matched_id}", (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) cv2.putText(frame, f"Behavior: {behavior}", (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1) # پاکسازی اشیاء غیرفعال inactive_ids = [obj_id for obj_id in object_centroids if obj_id not in [id for id, _ in object_centroids.items()]] for iid in inactive_ids: object_centroids.pop(iid, None) prev_gray = gray_blur.copy() cv2.imshow("Motion AI", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows()