|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
|
|
class neural_network (nn.Module):
|
|
def __init__(self, input_dim, hidden_dim, output_dim):
|
|
super(neural_network, self).__init__()
|
|
self.hidden = nn.Linear (input_dim, hidden_dim)
|
|
self.act = nn.ReLU()
|
|
self.output = nn.Linear (hidden_dim, output_dim)
|
|
|
|
def forward (self, x):
|
|
x = self.hidden (x)
|
|
x = self.act (x)
|
|
x = self.output (x)
|
|
return x
|
|
|
|
|
|
input_dim = 4
|
|
hidden_dim = 32
|
|
output_dim = 4
|
|
|
|
model = neural_network(input_dim, hidden_dim, output_dim)
|
|
print(model)
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr= 0.01) |