|
import pandas as pd
|
|
import torch
|
|
import numpy
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from sklearn.feature_extraction.text import CountVectorizer
|
|
|
|
|
|
data = {
|
|
"text": [
|
|
"This movie was great",
|
|
"I did not like this movie",
|
|
"The acting was terrible",
|
|
"I loved the plot",
|
|
"It was a boring experience",
|
|
"What a fantastic film!",
|
|
"I hated it",
|
|
"It was okay",
|
|
"Absolutely wonderful!",
|
|
"Not my favorite"
|
|
"Was very good"
|
|
"Very good"
|
|
],
|
|
"label": [
|
|
1,
|
|
0,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
1
|
|
]
|
|
}
|
|
|
|
|
|
df = pd.DataFrame(data)
|
|
df.to_csv("data.csv", index=False)
|
|
|
|
|
|
df = pd.read_csv("data.csv")
|
|
|
|
|
|
vectorizer = CountVectorizer()
|
|
X = vectorizer.fit_transform(df["text"]).toarray()
|
|
y = df["label"].values
|
|
|
|
|
|
X_tensor = torch.tensor(X, dtype=torch.float32)
|
|
y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)
|
|
|
|
|
|
class SentimentAnalysisModel(nn.Module):
|
|
def __init__(self, input_size):
|
|
super(SentimentAnalysisModel, self).__init__()
|
|
self.fc1 = nn.Linear(input_size, 8)
|
|
self.fc2 = nn.Linear(8, 1)
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.relu(self.fc1(x))
|
|
x = torch.sigmoid(self.fc2(x))
|
|
return x
|
|
|
|
|
|
input_size = X.shape[1]
|
|
model = SentimentAnalysisModel(input_size)
|
|
|
|
criterion = nn.BCELoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
|
|
|
|
|
epochs = 100
|
|
|
|
for epoch in range(epochs):
|
|
|
|
y_pred = model(X_tensor)
|
|
|
|
|
|
loss = criterion(y_pred, y_tensor)
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
|
|
if (epoch+1) % 10 == 0:
|
|
print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}")
|
|
|
|
|
|
def predict_sentiment(text):
|
|
|
|
text_vectorized = vectorizer.transform([text]).toarray()
|
|
text_tensor = torch.tensor(text_vectorized, dtype=torch.float32)
|
|
|
|
|
|
output = model(text_tensor)
|
|
|
|
|
|
prediction = 1 if output.item() > 0.5 else 0
|
|
|
|
return "Positive" if prediction == 1 else "Negative"
|
|
|
|
|
|
print(predict_sentiment("I really enjoyed this movie!"))
|
|
print(predict_sentiment("This was the worst experience ever."))
|
|
print(predict_sentiment("It was just okay, nothing special."))
|
|
print(predict_sentiment("Absolutely loved the storyline!"))
|
|
|