|
import torch
|
|
import torch_directml
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader
|
|
from torchvision import datasets
|
|
from torchvision.transforms import ToTensor, Lambda, Compose, transforms
|
|
import torchvision.models as models
|
|
import collections
|
|
import matplotlib.pyplot as plt
|
|
import argparse
|
|
import time
|
|
import os
|
|
import pathlib
|
|
|
|
def get_pytorch_root(path):
|
|
return pathlib.Path(__file__).parent.parent.resolve()
|
|
|
|
|
|
def get_pytorch_data():
|
|
return str(os.path.join(pathlib.Path(__file__).parent.parent.resolve(), 'data'))
|
|
|
|
|
|
def get_data_path(path):
|
|
if (os.path.isabs(path)):
|
|
return path
|
|
else:
|
|
return str(os.path.join(get_pytorch_data(), path))
|
|
|
|
|
|
def print_dataloader(dataloader, mode):
|
|
for X, y in dataloader:
|
|
print("\t{} data X [N, C, H, W]: \n\t\tshape={}, \n\t\tdtype={}".format(mode, X.shape, X.dtype))
|
|
print("\t{} data Y: \n\t\tshape={}, \n\t\tdtype={}".format(mode, y.shape, y.dtype))
|
|
break
|
|
|
|
|
|
def create_training_data_transform(input_size):
|
|
return transforms.Compose([transforms.RandomResizedCrop(input_size),
|
|
transforms.RandomHorizontalFlip(),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
|
|
|
|
|
def create_training_dataloader(path, batch_size, input_size=224):
|
|
path = get_data_path(path)
|
|
print('Loading the training dataset from: {}'.format(path))
|
|
train_transform = create_training_data_transform(input_size)
|
|
training_set = datasets.CIFAR10(root=path, train=True, download=False, transform=train_transform)
|
|
data_loader = DataLoader(dataset=training_set, batch_size=batch_size, shuffle=True, num_workers=0)
|
|
print_dataloader(data_loader, 'Train')
|
|
return data_loader
|
|
|
|
|
|
def create_testing_data_transform(input_size):
|
|
return transforms.Compose([
|
|
transforms.Resize(256),
|
|
transforms.CenterCrop(input_size),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
])
|
|
|
|
|
|
def create_testing_dataloader(path, batch_size, input_size=224):
|
|
path = get_data_path(path)
|
|
print('Loading the testing dataset from: {}'.format(path))
|
|
test_transform = create_testing_data_transform(input_size)
|
|
test_set = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform)
|
|
data_loader = DataLoader(dataset=test_set, batch_size=batch_size, shuffle=False, num_workers=0)
|
|
print_dataloader(data_loader, 'Test')
|
|
return data_loader |