|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import numpy as np
|
|
import random
|
|
|
|
with open("data.txt", "r", encoding="utf-8") as f:
|
|
text = f.read()
|
|
|
|
|
|
chars = sorted(list(set(text)))
|
|
char_to_idx = {ch: i for i, ch in enumerate(chars)}
|
|
idx_to_char = {i: ch for i, ch in enumerate(chars)}
|
|
|
|
|
|
data = [char_to_idx[ch] for ch in text]
|
|
|
|
|
|
seq_length = 50
|
|
batch_size = 64
|
|
hidden_size = 128
|
|
num_layers = 2
|
|
num_epochs = 100
|
|
learning_rate = 0.01
|
|
class TextDataset(torch.utils.data.Dataset):
|
|
def __init__(self, data, seq_length):
|
|
self.data = data
|
|
self.seq_length = seq_length
|
|
|
|
def __len__(self):
|
|
return len(self.data) - self.seq_length
|
|
|
|
def __getitem__(self, idx):
|
|
return (
|
|
torch.tensor(self.data[idx:idx+self.seq_length], dtype=torch.long),
|
|
torch.tensor(self.data[idx+1:idx+self.seq_length+1], dtype=torch.long)
|
|
)
|
|
|
|
dataset = TextDataset(data, seq_length)
|
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
|
class LSTMModel(nn.Module):
|
|
def __init__(self, vocab_size, hidden_size, num_layers):
|
|
super(LSTMModel, self).__init__()
|
|
self.embedding = nn.Embedding(vocab_size, hidden_size)
|
|
self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first=True)
|
|
self.fc = nn.Linear(hidden_size, vocab_size)
|
|
|
|
def forward(self, x, hidden=None):
|
|
x = self.embedding(x)
|
|
output, hidden = self.lstm(x, hidden)
|
|
output = self.fc(output)
|
|
return output, hidden
|
|
|
|
vocab_size = len(chars)
|
|
model = LSTMModel(vocab_size, hidden_size, num_layers)
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
|
|
for epoch in range(num_epochs):
|
|
hidden = None
|
|
|
|
for inputs, targets in dataloader:
|
|
inputs, targets = inputs.to(device), targets.to(device)
|
|
optimizer.zero_grad()
|
|
|
|
|
|
outputs, hidden = model(inputs, hidden)
|
|
|
|
|
|
hidden = (hidden[0].detach(), hidden[1].detach())
|
|
|
|
|
|
loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))
|
|
|
|
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}")
|
|
|
|
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss / len(dataloader):.4f}")
|
|
def generate_text(model, start_text, length=200):
|
|
model.eval()
|
|
input_seq = torch.tensor([char_to_idx[ch] for ch in start_text], dtype=torch.long).unsqueeze(0).to(device)
|
|
hidden = None
|
|
generated_text = start_text
|
|
|
|
for _ in range(length):
|
|
output, hidden = model(input_seq, hidden)
|
|
next_char_idx = torch.argmax(output[:, -1, :]).item()
|
|
generated_text += idx_to_char[next_char_idx]
|
|
input_seq = torch.cat([input_seq[:, 1:], torch.tensor([[next_char_idx]], dtype=torch.long).to(device)], dim=1)
|
|
|
|
return generated_text
|
|
|
|
|
|
start_text = "Once upon a time"
|
|
print(generate_text(model, start_text, 200))
|
|
|