|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils.data import Dataset, DataLoader
|
|
import random
|
|
|
|
|
|
SEQ_LENGTH = 100
|
|
BATCH_SIZE = 64
|
|
HIDDEN_SIZE = 256
|
|
NUM_LAYERS = 2
|
|
LEARNING_RATE = 0.001
|
|
NUM_EPOCHS = 50
|
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
class CharDataset(Dataset):
|
|
def __init__(self, text, seq_length):
|
|
self.text = text
|
|
self.seq_length = seq_length
|
|
self.chars = sorted(list(set(text)))
|
|
self.char_to_idx = {c: i for i, c in enumerate(self.chars)}
|
|
self.idx_to_char = {i: c for i, c in enumerate(self.chars)}
|
|
self.encoded_text = [self.char_to_idx[c] for c in text]
|
|
|
|
def __len__(self):
|
|
return len(self.text) - self.seq_length
|
|
|
|
def __getitem__(self, idx):
|
|
inputs = torch.tensor(self.encoded_text[idx:idx+self.seq_length])
|
|
targets = torch.tensor(self.encoded_text[idx+1:idx+self.seq_length+1])
|
|
return inputs, targets
|
|
|
|
|
|
class CharRNN(nn.Module):
|
|
def __init__(self, input_size, hidden_size, output_size, num_layers):
|
|
super().__init__()
|
|
self.embedding = nn.Embedding(input_size, hidden_size)
|
|
self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first=True)
|
|
self.fc = nn.Linear(hidden_size, output_size)
|
|
|
|
def forward(self, x, hidden=None):
|
|
x = self.embedding(x)
|
|
out, hidden = self.lstm(x, hidden)
|
|
out = self.fc(out)
|
|
return out, hidden
|
|
|
|
|
|
with open('dataset.txt', 'r', encoding='utf-8') as f:
|
|
text = f.read()
|
|
|
|
|
|
dataset = CharDataset(text, SEQ_LENGTH)
|
|
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
|
|
|
|
|
|
model = CharRNN(
|
|
input_size=len(dataset.chars),
|
|
hidden_size=HIDDEN_SIZE,
|
|
output_size=len(dataset.chars),
|
|
num_layers=NUM_LAYERS
|
|
).to(DEVICE)
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
|
|
|
|
|
for epoch in range(NUM_EPOCHS):
|
|
model.train()
|
|
total_loss = 0
|
|
|
|
for inputs, targets in dataloader:
|
|
inputs, targets = inputs.to(DEVICE), targets.to(DEVICE)
|
|
|
|
optimizer.zero_grad()
|
|
outputs, _ = model(inputs)
|
|
loss = criterion(outputs.view(-1, len(dataset.chars)), targets.view(-1))
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
total_loss += loss.item()
|
|
|
|
avg_loss = total_loss / len(dataloader)
|
|
print(f'Epoch {epoch+1}/{NUM_EPOCHS}, Loss: {avg_loss:.4f}')
|
|
|
|
|
|
def generate(model, start_str, length=100, temperature=0.8):
|
|
model.eval()
|
|
chars = [c for c in start_str]
|
|
hidden = None
|
|
|
|
with torch.no_grad():
|
|
|
|
for char in chars[:-1]:
|
|
x = torch.tensor([[dataset.char_to_idx[char]]]).to(DEVICE)
|
|
_, hidden = model(x, hidden)
|
|
|
|
|
|
x = torch.tensor([[dataset.char_to_idx[chars[-1]]]]).to(DEVICE)
|
|
|
|
for _ in range(length):
|
|
output, hidden = model(x, hidden)
|
|
probs = torch.softmax(output / temperature, dim=-1).cpu()
|
|
char_idx = torch.multinomial(probs.view(-1), 1).item()
|
|
chars.append(dataset.idx_to_char[char_idx])
|
|
x = torch.tensor([[char_idx]]).to(DEVICE)
|
|
|
|
return ''.join(chars)
|
|
|
|
|
|
print(generate(model, start_str="The ", length=500)) |