|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils.data import Dataset, DataLoader
|
|
import numpy as np
|
|
|
|
|
|
FILE_PATH = 'dataset.txt'
|
|
SEQ_LENGTH = 32
|
|
BATCH_SIZE = 8
|
|
EPOCHS = 1
|
|
EMBEDDING_DIM = 64
|
|
HIDDEN_DIM = 64
|
|
LEARNING_RATE = 0.01
|
|
|
|
|
|
with open(FILE_PATH, 'r', encoding='utf-8') as f:
|
|
text = f.read()
|
|
|
|
|
|
chars = sorted(list(set(text)))
|
|
vocab_size = len(chars)
|
|
char_to_idx = {ch: i for i, ch in enumerate(chars)}
|
|
idx_to_char = {i: ch for i, ch in enumerate(chars)}
|
|
|
|
|
|
encoded_text = np.array([char_to_idx[ch] for ch in text])
|
|
|
|
|
|
class TextDataset(Dataset):
|
|
def __init__(self, data, seq_length):
|
|
self.data = data
|
|
self.seq_length = seq_length
|
|
|
|
def __len__(self):
|
|
return len(self.data) - self.seq_length - 1
|
|
|
|
def __getitem__(self, idx):
|
|
x = self.data[idx:idx+self.seq_length]
|
|
y = self.data[idx+1:idx+self.seq_length+1]
|
|
return torch.from_numpy(x).long(), torch.from_numpy(y).long()
|
|
|
|
dataset = TextDataset(encoded_text, SEQ_LENGTH)
|
|
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
|
|
|
|
|
|
class CharLM(nn.Module):
|
|
def __init__(self):
|
|
super(CharLM, self).__init__()
|
|
self.embedding = nn.Embedding(vocab_size, EMBEDDING_DIM)
|
|
self.rnn = nn.GRU(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True)
|
|
self.fc = nn.Linear(HIDDEN_DIM, vocab_size)
|
|
|
|
def forward(self, x, hidden=None):
|
|
x = self.embedding(x)
|
|
out, hidden = self.rnn(x, hidden)
|
|
out = self.fc(out)
|
|
return out, hidden
|
|
|
|
model = CharLM()
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
|
|
|
|
|
for epoch in range(EPOCHS):
|
|
model.train()
|
|
total_loss = 0
|
|
|
|
for inputs, targets in dataloader:
|
|
optimizer.zero_grad()
|
|
outputs, _ = model(inputs)
|
|
loss = criterion(outputs.reshape(-1, vocab_size), targets.reshape(-1))
|
|
loss.backward()
|
|
optimizer.step()
|
|
total_loss += loss.item()
|
|
|
|
print(f'Epoch {epoch+1}/{EPOCHS}, Loss: {total_loss/len(dataloader):.4f}')
|
|
|
|
|
|
def generate_text(model, start_str, length=100, temperature=0.7, top_k=0):
|
|
"""
|
|
Generate text with temperature scaling and top-k sampling
|
|
temperature: >1.0 more random, <1.0 more conservative
|
|
top_k: 0=no sampling, >0 top-k tokens to consider
|
|
"""
|
|
model.eval()
|
|
chars = [ch for ch in start_str]
|
|
input_seq = torch.tensor([char_to_idx[ch] for ch in chars]).unsqueeze(0)
|
|
hidden = None
|
|
|
|
with torch.no_grad():
|
|
for _ in range(length):
|
|
outputs, hidden = model(input_seq, hidden)
|
|
logits = outputs[0, -1] / temperature
|
|
|
|
if top_k > 0:
|
|
top_vals, top_idx = torch.topk(logits, top_k)
|
|
logits[logits < top_vals[-1]] = -float('Inf')
|
|
|
|
probs = torch.softmax(logits, dim=-1)
|
|
next_char = torch.multinomial(probs, num_samples=1).item()
|
|
chars.append(idx_to_char[next_char])
|
|
input_seq = torch.tensor([[next_char]])
|
|
|
|
return ''.join(chars)
|
|
|
|
|
|
print("\nGreedy sampling (temperature=0.5):")
|
|
print(generate_text(model, "The ", temperature=0.5))
|
|
|
|
print("\nCreative sampling (temperature=1.2):")
|
|
print(generate_text(model, "Once ", temperature=1.2))
|
|
|
|
print("\nTop-k sampling (k=5):")
|
|
print(generate_text(model, "In ", top_k=5))
|
|
|
|
print("\nCombined (temp=0.7, top_k=3):")
|
|
print(generate_text(model, "AI ", temperature=0.7, top_k=3))
|
|
|
|
|