|
|
|
import os
|
|
import logging
|
|
import torch
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
AutoModelForCausalLM,
|
|
Trainer,
|
|
TrainingArguments,
|
|
DataCollatorForLanguageModeling,
|
|
get_cosine_schedule_with_warmup,
|
|
)
|
|
from datasets import load_dataset
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
model_name = "sshleifer/tiny-gpt2"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
if tokenizer.pad_token is None:
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
|
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
dataset = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
|
|
|
|
|
def tokenize_function(examples):
|
|
|
|
|
|
return tokenizer(
|
|
examples["text"],
|
|
truncation=True,
|
|
max_length=32,
|
|
padding="max_length"
|
|
)
|
|
|
|
|
|
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
|
|
|
|
|
training_args = TrainingArguments(
|
|
output_dir="./gpt2-finetuned",
|
|
overwrite_output_dir=True,
|
|
num_train_epochs=1,
|
|
per_device_train_batch_size=8,
|
|
save_steps=1000,
|
|
save_total_limit=2,
|
|
logging_steps=100,
|
|
prediction_loss_only=True,
|
|
)
|
|
|
|
|
|
|
|
num_update_steps_per_epoch = len(tokenized_dataset) // training_args.per_device_train_batch_size
|
|
max_train_steps = training_args.num_train_epochs * num_update_steps_per_epoch
|
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=0.1, weight_decay=0.1)
|
|
|
|
|
|
scheduler = get_cosine_schedule_with_warmup(
|
|
optimizer,
|
|
num_warmup_steps=100,
|
|
num_training_steps=max_train_steps
|
|
)
|
|
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=tokenized_dataset,
|
|
data_collator=data_collator,
|
|
optimizers=(optimizer, scheduler)
|
|
)
|
|
|
|
|
|
logger.info("Starting training...")
|
|
trainer.train()
|
|
|
|
|
|
model.save_pretrained("./gpt2-finetuned")
|
|
tokenizer.save_pretrained("./gpt2-finetuned")
|
|
logger.info("Training complete and model saved.")
|
|
|