|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
MODEL_SAVE_PATH = "char_lm_model.pth"
|
|
SEQ_LENGTH = 32
|
|
EMBEDDING_DIM = 64
|
|
HIDDEN_DIM = 64
|
|
|
|
|
|
with open('dataset.txt', 'r', encoding='utf-8') as f:
|
|
text = f.read()
|
|
|
|
chars = sorted(list(set(text)))
|
|
vocab_size = len(chars)
|
|
char_to_idx = {ch: i for i, ch in enumerate(chars)}
|
|
idx_to_char = {i: ch for i, ch in enumerate(chars)}
|
|
|
|
|
|
class CharLM(nn.Module):
|
|
def __init__(self):
|
|
super(CharLM, self).__init__()
|
|
self.embedding = nn.Embedding(vocab_size, EMBEDDING_DIM)
|
|
self.rnn = nn.GRU(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True)
|
|
self.fc = nn.Linear(HIDDEN_DIM, vocab_size)
|
|
|
|
def forward(self, x, hidden=None):
|
|
x = self.embedding(x)
|
|
out, hidden = self.rnn(x, hidden)
|
|
out = self.fc(out)
|
|
return out, hidden
|
|
|
|
|
|
model = CharLM()
|
|
model.load_state_dict(torch.load(MODEL_SAVE_PATH))
|
|
model.eval()
|
|
|
|
def generate_text(model, start_str, length=100, temperature=0.7, top_k=0):
|
|
"""
|
|
Generate text with temperature scaling and top-k sampling
|
|
"""
|
|
model.eval()
|
|
chars = [ch for ch in start_str]
|
|
input_seq = torch.tensor([char_to_idx[ch] for ch in chars]).unsqueeze(0)
|
|
hidden = None
|
|
|
|
with torch.no_grad():
|
|
for _ in range(length):
|
|
outputs, hidden = model(input_seq, hidden)
|
|
logits = outputs[0, -1] / temperature
|
|
|
|
if top_k > 0:
|
|
top_vals, top_idx = torch.topk(logits, top_k)
|
|
logits[logits < top_vals[-1]] = -float('Inf')
|
|
|
|
probs = torch.softmax(logits, dim=-1)
|
|
next_char = torch.multinomial(probs, num_samples=1).item()
|
|
chars.append(idx_to_char[next_char])
|
|
input_seq = torch.tensor([[next_char]])
|
|
|
|
return ''.join(chars)
|
|
|
|
|
|
def chat():
|
|
print("Chat with the model! Type 'exit' to stop.")
|
|
while True:
|
|
user_input = input("You: ")
|
|
if user_input.lower() == 'exit':
|
|
break
|
|
response = generate_text(model, user_input, length=100, temperature=0.7, top_k=5)
|
|
print("Bot:", response)
|
|
|
|
chat()
|
|
|