|
import torch
|
|
import numpy as np
|
|
|
|
|
|
CONFIG = {
|
|
"FILE_PATH": 'dataset.txt',
|
|
"SEQ_LENGTH": 32,
|
|
"EMBEDDING_DIM": 64,
|
|
"HIDDEN_DIM": 64,
|
|
"NUM_LAYERS": 1,
|
|
"DROPOUT": 0.2,
|
|
"MODEL_SAVE_PATH": "char_lm_advanced.pth",
|
|
"TEMPERATURE": 0.7,
|
|
"TOP_K": 5,
|
|
"TOP_P": 0.95
|
|
}
|
|
|
|
|
|
with open(CONFIG["FILE_PATH"], 'r', encoding='utf-8') as f:
|
|
text = f.read()
|
|
|
|
chars = sorted(list(set(text)))
|
|
char_to_idx = {ch: i for i, ch in enumerate(chars)}
|
|
idx_to_char = {i: ch for i, ch in enumerate(chars)}
|
|
vocab_size = len(chars)
|
|
|
|
|
|
class CharLM(torch.nn.Module):
|
|
def __init__(self):
|
|
super(CharLM, self).__init__()
|
|
self.embedding = torch.nn.Embedding(vocab_size, CONFIG["EMBEDDING_DIM"])
|
|
self.lstm = torch.nn.LSTM(
|
|
CONFIG["EMBEDDING_DIM"],
|
|
CONFIG["HIDDEN_DIM"],
|
|
num_layers=CONFIG["NUM_LAYERS"],
|
|
dropout=CONFIG["DROPOUT"] if CONFIG["NUM_LAYERS"] > 1 else 0,
|
|
batch_first=True
|
|
)
|
|
self.dropout = torch.nn.Dropout(CONFIG["DROPOUT"])
|
|
self.fc = torch.nn.Linear(CONFIG["HIDDEN_DIM"], vocab_size)
|
|
|
|
def forward(self, x, hidden=None):
|
|
x = self.embedding(x)
|
|
out, hidden = self.lstm(x, hidden)
|
|
out = self.dropout(out)
|
|
out = self.fc(out)
|
|
return out, hidden
|
|
|
|
|
|
model = CharLM()
|
|
model.load_state_dict(torch.load(CONFIG["MODEL_SAVE_PATH"]))
|
|
model.eval()
|
|
|
|
def generate_text(model, start_str, length=200, temperature=CONFIG["TEMPERATURE"],
|
|
top_k=CONFIG["TOP_K"], top_p=CONFIG["TOP_P"]):
|
|
"""
|
|
Generate text with temperature scaling, top-k, and nucleus (top-p) sampling
|
|
"""
|
|
model.eval()
|
|
chars = list(start_str)
|
|
input_seq = torch.tensor([char_to_idx[ch] for ch in chars]).unsqueeze(0)
|
|
hidden = None
|
|
|
|
with torch.no_grad():
|
|
for _ in range(length):
|
|
outputs, hidden = model(input_seq, hidden)
|
|
logits = outputs[0, -1] / temperature
|
|
|
|
|
|
if top_k > 0:
|
|
top_vals, top_idx = torch.topk(logits, top_k)
|
|
logits[logits < top_vals[-1]] = -float('Inf')
|
|
|
|
|
|
if top_p > 0:
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
|
sorted_indices_to_remove[..., 0] = 0
|
|
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
|
logits[indices_to_remove] = -float('Inf')
|
|
|
|
probs = torch.softmax(logits, dim=-1)
|
|
next_char = torch.multinomial(probs, num_samples=1).item()
|
|
chars.append(idx_to_char[next_char])
|
|
input_seq = torch.tensor([[next_char]])
|
|
|
|
return ''.join(chars)
|
|
|
|
|
|
while True:
|
|
try:
|
|
print("\n" + "="*50)
|
|
prompt = input("Enter your starting text (or 'exit' to quit):\n> ")
|
|
|
|
if prompt.lower() == 'exit':
|
|
print("Goodbye!")
|
|
break
|
|
|
|
|
|
valid_prompt = [c for c in prompt if c in char_to_idx]
|
|
if not valid_prompt:
|
|
print("Please use characters from the training data.")
|
|
continue
|
|
|
|
|
|
length = int(input("Output length (50-500 recommended): ")) or 200
|
|
temp = float(input(f"Temperature [{CONFIG['TEMPERATURE']}]: ") or CONFIG["TEMPERATURE"])
|
|
top_k = int(input(f"Top-K [{CONFIG['TOP_K']}]: ") or CONFIG["TOP_K"])
|
|
top_p = float(input(f"Top-P [{CONFIG['TOP_P']}]: ") or CONFIG["TOP_P"])
|
|
|
|
|
|
print("\nGenerating...")
|
|
generated = generate_text(
|
|
model,
|
|
''.join(valid_prompt),
|
|
length=length,
|
|
temperature=temp,
|
|
top_k=top_k,
|
|
top_p=top_p
|
|
)
|
|
print("\nGenerated Text:")
|
|
print(generated)
|
|
print("="*50)
|
|
|
|
except ValueError:
|
|
print("Invalid input! Please enter valid numbers for parameters.")
|
|
except KeyboardInterrupt:
|
|
print("\nExiting...")
|
|
break |