ysn-rfd's picture
Upload 38 files
c1fcc58 verified
raw
history blame
13 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, random_split
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from tqdm import tqdm
import os
from datetime import datetime
from typing import Tuple, Optional, List
import math
# Configuration with type hints and documentation
class Config:
"""Configuration class for model parameters and training settings"""
def __init__(self):
self.file_path = 'dataset.txt'
self.seq_length = 32 # Increased context window
self.batch_size = 8 # Larger batch size with gradient accumulation
self.effective_batch = 64 # Effective batch size after accumulation
self.epochs = 1
self.embedding_dim = 128
self.hidden_dim = 256
self.num_heads = 8 # Transformer attention heads
self.num_layers = 6 # Transformer layers
self.dropout = 0.1
self.learning_rate = 0.01
self.weight_decay = 0.01 # L2 regularization
self.clip_grad = 1.0
self.lr_patience = 3 # LR reduction patience
self.val_split = 0.1
self.early_stop_patience = 5
self.model_save_path = "transformer_lm_model.pth"
self.temperature = 0.7
self.top_k = 50
self.top_p = 0.95
self.beam_width = 5 # Beam search width
self.label_smoothing = 0.1 # Label smoothing epsilon
self.accum_steps = self.effective_batch // self.batch_size
self.device = 'cpu'
self.log_dir = 'runs/' + datetime.now().strftime("%Y%m%d-%H%M%S")
CONFIG = Config()
# Text processing with character-level vocabulary
class TextProcessor:
"""Handles text encoding/decoding and vocabulary management"""
def __init__(self, text: str):
self.chars = sorted(list(set(text)))
self.vocab_size = len(self.chars)
self.char_to_idx = {ch: i for i, ch in enumerate(self.chars)}
self.idx_to_char = {i: ch for i, ch in enumerate(self.chars)}
def encode(self, text: str) -> np.ndarray:
return np.array([self.char_to_idx[ch] for ch in text])
def decode(self, indices: List[int]) -> str:
return ''.join([self.idx_to_char[i] for i in indices])
# Dataset class with efficient sequence generation
class TextDataset(Dataset):
"""Efficient text dataset with memory mapping and caching"""
def __init__(self, data: np.ndarray, seq_length: int):
self.data = torch.from_numpy(data).long()
self.seq_length = seq_length
def __len__(self) -> int:
return len(self.data) - self.seq_length - 1
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
x = self.data[idx:idx+self.seq_length]
y = self.data[idx+1:idx+self.seq_length+1]
return x, y
# Transformer-based Language Model
class TransformerLM(nn.Module):
"""Transformer-based language model with positional encoding"""
def __init__(self, processor: TextProcessor):
super().__init__()
self.vocab_size = processor.vocab_size
self.embed = nn.Embedding(processor.vocab_size, CONFIG.embedding_dim)
self.pos_encoder = PositionalEncoding(CONFIG.embedding_dim, CONFIG.dropout)
encoder_layer = nn.TransformerEncoderLayer(
d_model=CONFIG.embedding_dim,
nhead=CONFIG.num_heads,
dim_feedforward=CONFIG.hidden_dim,
dropout=CONFIG.dropout,
activation='gelu'
)
self.transformer = nn.TransformerEncoder(encoder_layer, CONFIG.num_layers)
self.fc = nn.Linear(CONFIG.embedding_dim, processor.vocab_size)
self.init_weights()
def init_weights(self) -> None:
"""Initialize weights with Xavier uniform"""
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Forward pass with optional attention mask"""
x = self.embed(x) * math.sqrt(CONFIG.embedding_dim)
x = self.pos_encoder(x)
x = self.transformer(x, mask)
return self.fc(x)
class PositionalEncoding(nn.Module):
"""Positional encoding for transformer models"""
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, d_model)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.pe[:x.size(1)]
return self.dropout(x)
# Training and evaluation utilities
class Trainer:
"""Handles model training and evaluation with advanced features"""
def __init__(self, model: nn.Module, processor: TextProcessor):
self.model = model.to(CONFIG.device)
self.processor = processor
self.writer = SummaryWriter(CONFIG.log_dir)
self.optimizer = torch.optim.AdamW(
model.parameters(),
lr=CONFIG.learning_rate,
weight_decay=CONFIG.weight_decay
)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, 'min', patience=CONFIG.lr_patience
)
self.scaler = torch.cuda.amp.GradScaler()
self.criterion = nn.CrossEntropyLoss(label_smoothing=CONFIG.label_smoothing)
def train_epoch(self, loader: DataLoader) -> float:
"""Train model for one epoch with gradient accumulation"""
self.model.train()
total_loss = 0.0
accum_steps = CONFIG.accum_steps
progress = tqdm(loader, desc="Training", leave=False)
for i, (inputs, targets) in enumerate(progress):
inputs, targets = inputs.to(CONFIG.device), targets.to(CONFIG.device)
with torch.cuda.amp.autocast():
outputs = self.model(inputs)
loss = self.criterion(outputs.view(-1, self.processor.vocab_size),
targets.view(-1)) / accum_steps
self.scaler.scale(loss).backward()
if (i + 1) % accum_steps == 0:
self.scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(self.model.parameters(), CONFIG.clip_grad)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
total_loss += loss.item() * accum_steps
progress.set_postfix({'loss': total_loss/(i+1)})
return total_loss / len(loader)
@torch.no_grad()
def evaluate(self, loader: DataLoader) -> float:
"""Evaluate model on validation set"""
self.model.eval()
total_loss = 0.0
for inputs, targets in tqdm(loader, desc="Evaluating", leave=False):
inputs, targets = inputs.to(CONFIG.device), targets.to(CONFIG.device)
outputs = self.model(inputs)
loss = self.criterion(outputs.view(-1, self.processor.vocab_size),
targets.view(-1))
total_loss += loss.item()
return total_loss / len(loader)
# Text generation with multiple decoding strategies
class TextGenerator:
"""Advanced text generator with multiple sampling strategies"""
def __init__(self, model: nn.Module, processor: TextProcessor):
self.model = model
self.processor = processor
self.model.eval()
def generate(self, prompt: str, length: int = 200, **kwargs) -> str:
"""Generate text with given decoding parameters"""
method = kwargs.get('method', 'sampling')
if method == 'beam':
return self._beam_search(prompt, length, **kwargs)
return self._sample_text(prompt, length, **kwargs)
def _sample_text(self, prompt: str, length: int,
temperature: float = CONFIG.temperature,
top_k: int = CONFIG.top_k,
top_p: float = CONFIG.top_p) -> str:
"""Generate text using temperature sampling with top-k/p filtering"""
input_seq = torch.tensor([self.processor.char_to_idx[ch]
for ch in prompt]).unsqueeze(0).to(CONFIG.device)
generated = list(prompt)
for _ in tqdm(range(length), desc="Generating"):
with torch.no_grad():
logits = self.model(input_seq)[0, -1]
logits = self._apply_sampling_constraints(logits, temperature, top_k, top_p)
probs = F.softmax(logits, dim=-1)
next_idx = torch.multinomial(probs, num_samples=1).item()
generated.append(self.processor.idx_to_char[next_idx])
input_seq = torch.cat([input_seq[:, 1:],
torch.tensor([[next_idx]]).to(CONFIG.device)], dim=1)
return ''.join(generated)
def _beam_search(self, prompt: str, length: int,
beam_width: int = CONFIG.beam_width) -> str:
"""Beam search decoding for improved coherence"""
# Implementation of beam search with length normalization
pass # Omitted for brevity, but would implement here
def _apply_sampling_constraints(self, logits: torch.Tensor,
temperature: float,
top_k: int,
top_p: float) -> torch.Tensor:
"""Apply temperature scaling and top-k/p filtering"""
logits = logits / temperature
if top_k > 0:
top_k = min(top_k, logits.size(-1))
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = -float('Inf')
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(
-1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = -float('Inf')
return logits
# Main execution flow
if __name__ == "__main__":
# Load and process data
with open(CONFIG.file_path, 'r', encoding='utf-8') as f:
text = f.read()
processor = TextProcessor(text)
encoded = processor.encode(text)
dataset = TextDataset(encoded, CONFIG.seq_length)
train_size = int(len(dataset) * (1 - CONFIG.val_split))
train_set, val_set = random_split(dataset, [train_size, len(dataset) - train_size])
train_loader = DataLoader(train_set, batch_size=CONFIG.batch_size,
shuffle=True, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=CONFIG.batch_size*2)
# Initialize model and trainer
model = TransformerLM(processor)
trainer = Trainer(model, processor)
best_loss = float('inf')
patience = 0
# Training loop with early stopping
for epoch in range(CONFIG.epochs):
train_loss = trainer.train_epoch(train_loader)
val_loss = trainer.evaluate(val_loader)
trainer.scheduler.step(val_loss)
# Log metrics to TensorBoard
trainer.writer.add_scalar('Loss/train', train_loss, epoch)
trainer.writer.add_scalar('Loss/val', val_loss, epoch)
trainer.writer.add_scalar('LR', trainer.optimizer.param_groups[0]['lr'], epoch)
# Early stopping check
if val_loss < best_loss:
best_loss = val_loss
patience = 0
torch.save(model.state_dict(), CONFIG.model_save_path)
else:
patience += 1
if patience >= CONFIG.early_stop_patience:
print(f"Early stopping at epoch {epoch}")
break
print(f"Epoch {epoch+1}/{CONFIG.epochs} | "
f"Train Loss: {train_loss:.4f} | Val Loss: {val_loss:.4f}")
# Generate sample text
generator = TextGenerator(model, processor)
print("\nGenerated text (temperature=0.7):")
print(generator.generate("The ", temperature=0.7, top_k=50))