ysn-rfd's picture
Upload 26 files
835424e verified
raw
history blame
3.59 kB
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
# خواندن داده‌ها از فایل
with open("data.txt", "r", encoding="utf-8") as f:
text = f.read()
# ایجاد دیکشنری برای تبدیل کاراکترها به اندیس و برعکس
chars = sorted(list(set(text)))
char_to_idx = {ch: i for i, ch in enumerate(chars)}
idx_to_char = {i: ch for i, ch in enumerate(chars)}
# تبدیل متن به لیست از اندیس‌ها
data = [char_to_idx[ch] for ch in text]
# تنظیم پارامترهای آموزشی
seq_length = 50 # طول دنباله ورودی
batch_size = 64
hidden_size = 128
num_layers = 2
num_epochs = 100
learning_rate = 0.01
class TextDataset(torch.utils.data.Dataset):
def __init__(self, data, seq_length):
self.data = data
self.seq_length = seq_length
def __len__(self):
return len(self.data) - self.seq_length
def __getitem__(self, idx):
return (
torch.tensor(self.data[idx:idx+self.seq_length], dtype=torch.long),
torch.tensor(self.data[idx+1:idx+self.seq_length+1], dtype=torch.long)
)
dataset = TextDataset(data, seq_length)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
class LSTMModel(nn.Module):
def __init__(self, vocab_size, hidden_size, num_layers):
super(LSTMModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, hidden=None):
x = self.embedding(x)
output, hidden = self.lstm(x, hidden)
output = self.fc(output)
return output, hidden
vocab_size = len(chars)
model = LSTMModel(vocab_size, hidden_size, num_layers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(num_epochs):
hidden = None # مقدار اولیه hidden
for inputs, targets in dataloader:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
# Forward pass
outputs, hidden = model(inputs, hidden)
# Detach hidden state to avoid graph dependency issues
hidden = (hidden[0].detach(), hidden[1].detach())
# Compute loss
loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))
# Backpropagation
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}")
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss / len(dataloader):.4f}")
def generate_text(model, start_text, length=200):
model.eval()
input_seq = torch.tensor([char_to_idx[ch] for ch in start_text], dtype=torch.long).unsqueeze(0).to(device)
hidden = None
generated_text = start_text
for _ in range(length):
output, hidden = model(input_seq, hidden)
next_char_idx = torch.argmax(output[:, -1, :]).item()
generated_text += idx_to_char[next_char_idx]
input_seq = torch.cat([input_seq[:, 1:], torch.tensor([[next_char_idx]], dtype=torch.long).to(device)], dim=1)
return generated_text
# تست تولید متن
start_text = "Once upon a time"
print(generate_text(model, start_text, 200))