ysn-rfd's picture
Upload 31 files
1be8a56 verified
raw
history blame
3.19 kB
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from torchvision.models import resnet18
from torch.nn.functional import cosine_similarity
# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Feature extractor using pretrained ResNet18
class VisualFeatureExtractor:
def __init__(self):
model = resnet18(pretrained=True)
self.model = torch.nn.Sequential(*list(model.children())[:-1]).to(device).eval()
self.transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor()
])
def extract(self, image):
try:
tensor = self.transform(image).unsqueeze(0).to(device)
with torch.no_grad():
features = self.model(tensor).squeeze()
return features / features.norm()
except:
return None
# Memory system for object identity
class ObjectMemory:
def __init__(self):
self.memory = {} # id: feature_vector
self.next_id = 1
def compare(self, feat, threshold=0.9):
best_id, best_sim = None, 0.0
for obj_id, stored_feat in self.memory.items():
sim = cosine_similarity(feat, stored_feat, dim=0).item()
if sim > best_sim and sim > threshold:
best_id, best_sim = obj_id, sim
return best_id, best_sim
def memorize(self, feat):
obj_id = self.next_id
self.memory[obj_id] = feat
self.next_id += 1
return obj_id
# Main application
def main():
cap = cv2.VideoCapture(0)
fgbg = cv2.createBackgroundSubtractorMOG2()
extractor = VisualFeatureExtractor()
memory = ObjectMemory()
while True:
ret, frame = cap.read()
if not ret:
break
fgmask = fgbg.apply(frame)
_, thresh = cv2.threshold(fgmask, 200, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
if cv2.contourArea(cnt) < 1000:
continue
x, y, w, h = cv2.boundingRect(cnt)
crop = frame[y:y+h, x:x+w]
feat = extractor.extract(crop)
if feat is None:
continue
matched_id, similarity = memory.compare(feat)
if matched_id is not None:
label = f"Known ID {matched_id} ({similarity*100:.1f}%)"
color = (0, 255, 0)
else:
new_id = memory.memorize(feat)
label = f"New Object (ID {new_id})"
color = (0, 0, 255)
cv2.rectangle(frame, (x, y), (x+w, y+h), color, 2)
cv2.putText(frame, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX,
0.6, (255, 255, 255), 2)
cv2.imshow("AI Object Memory", frame)
if cv2.waitKey(1) & 0xFF == 27: # ESC
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()