|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.utils.data import Dataset, DataLoader, random_split
|
|
from torch.cuda.amp import autocast, GradScaler
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
import json
|
|
import argparse
|
|
from datetime import datetime
|
|
|
|
|
|
CONFIG = {
|
|
"FILE_PATH": 'dataset.txt',
|
|
"SEQ_LENGTH": 32,
|
|
"BATCH_SIZE": 8,
|
|
"EPOCHS": 1,
|
|
"EMBEDDING_DIM": 64,
|
|
"N_HEADS": 1,
|
|
"FFN_DIM": 64,
|
|
"NUM_LAYERS": 3,
|
|
"DROPOUT": 0.1,
|
|
"LEARNING_RATE": 0.0005,
|
|
"WEIGHT_DECAY": 0.01,
|
|
"CLIP_GRAD": 1.0,
|
|
"LABEL_SMOOTHING": 0.1,
|
|
"GRAD_ACCUM_STEPS": 2,
|
|
"VAL_SPLIT": 0.1,
|
|
"EARLY_STOP_PATIENCE": 3,
|
|
"MODEL_SAVE_PATH": "transformer_lm_model.pth",
|
|
"TEMPERATURE": 0.7,
|
|
"TOP_K": 50,
|
|
"TOP_P": 0.9,
|
|
"LOG_DIR": "runs"
|
|
}
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
scaler = GradScaler(enabled=device.type == 'cuda')
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--config', type=str, help='Path to config JSON file')
|
|
args = parser.parse_args()
|
|
|
|
if args.config:
|
|
with open(args.config) as f:
|
|
CONFIG.update(json.load(f))
|
|
|
|
|
|
writer = SummaryWriter(f"{CONFIG['LOG_DIR']}/{datetime.now().strftime('%Y%m%d-%H%M%S')}")
|
|
|
|
|
|
with open(CONFIG["FILE_PATH"], 'r', encoding='utf-8') as f:
|
|
text = f.read()
|
|
|
|
|
|
chars = sorted(list(set(text)))
|
|
vocab_size = len(chars)
|
|
char_to_idx = {ch: i for i, ch in enumerate(chars)}
|
|
idx_to_char = {i: ch for i, ch in enumerate(chars)}
|
|
|
|
|
|
encoded_text = np.array([char_to_idx[ch] for ch in text])
|
|
|
|
|
|
class TextDataset(Dataset):
|
|
def __init__(self, data, seq_length):
|
|
self.data = torch.from_numpy(data).long()
|
|
self.seq_length = seq_length
|
|
|
|
def __len__(self):
|
|
return len(self.data) - self.seq_length - 1
|
|
|
|
def __getitem__(self, idx):
|
|
x = self.data[idx:idx+self.seq_length]
|
|
y = self.data[idx+1:idx+self.seq_length+1]
|
|
return x, y
|
|
|
|
dataset = TextDataset(encoded_text, CONFIG["SEQ_LENGTH"])
|
|
val_size = int(len(dataset) * CONFIG["VAL_SPLIT"])
|
|
train_size = len(dataset) - val_size
|
|
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=CONFIG["BATCH_SIZE"],
|
|
shuffle=True, pin_memory=True, num_workers=4)
|
|
val_loader = DataLoader(val_dataset, batch_size=CONFIG["BATCH_SIZE"],
|
|
pin_memory=True, num_workers=4)
|
|
|
|
|
|
class TransformerLM(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.embedding = nn.Embedding(vocab_size, CONFIG["EMBEDDING_DIM"])
|
|
self.pos_embed = nn.Embedding(CONFIG["SEQ_LENGTH"], CONFIG["EMBEDDING_DIM"])
|
|
|
|
self.transformer = nn.TransformerEncoder(
|
|
nn.TransformerEncoderLayer(
|
|
d_model=CONFIG["EMBEDDING_DIM"],
|
|
nhead=CONFIG["N_HEADS"],
|
|
dim_feedforward=CONFIG["FFN_DIM"],
|
|
dropout=CONFIG["DROPOUT"],
|
|
activation='gelu',
|
|
batch_first=True
|
|
),
|
|
num_layers=CONFIG["NUM_LAYERS"]
|
|
)
|
|
|
|
self.ln = nn.LayerNorm(CONFIG["EMBEDDING_DIM"])
|
|
self.fc = nn.Linear(CONFIG["EMBEDDING_DIM"], vocab_size)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
nn.init.xavier_uniform_(module.weight)
|
|
if module.bias is not None:
|
|
nn.init.constant_(module.bias, 0)
|
|
elif isinstance(module, nn.Embedding):
|
|
nn.init.xavier_uniform_(module.weight)
|
|
|
|
def forward(self, x, mask=None):
|
|
batch_size, seq_len = x.size()
|
|
positions = torch.arange(seq_len, device=device).expand(batch_size, seq_len)
|
|
x = self.embedding(x) + self.pos_embed(positions)
|
|
|
|
if mask is None:
|
|
mask = nn.Transformer.generate_square_subsequent_mask(seq_len).to(device)
|
|
|
|
x = self.transformer(x, mask)
|
|
x = self.ln(x)
|
|
return self.fc(x), None
|
|
|
|
model = TransformerLM().to(device)
|
|
optimizer = torch.optim.AdamW(model.parameters(),
|
|
lr=CONFIG["LEARNING_RATE"],
|
|
weight_decay=CONFIG["WEIGHT_DECAY"])
|
|
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
|
optimizer, mode='min', factor=0.5, patience=2)
|
|
|
|
|
|
best_val_loss = float('inf')
|
|
patience_counter = 0
|
|
|
|
for epoch in range(CONFIG["EPOCHS"]):
|
|
model.train()
|
|
train_loss = 0
|
|
progress_bar = tqdm(train_loader, desc=f'Epoch {epoch+1}/{CONFIG["EPOCHS"]}')
|
|
|
|
for i, (inputs, targets) in enumerate(progress_bar):
|
|
inputs, targets = inputs.to(device), targets.to(device)
|
|
|
|
with autocast(enabled=device.type == 'cuda'):
|
|
outputs, _ = model(inputs)
|
|
logits = outputs.view(-1, vocab_size)
|
|
targets = targets.view(-1)
|
|
|
|
if CONFIG["LABEL_SMOOTHING"]:
|
|
loss = F.cross_entropy(logits, targets,
|
|
label_smoothing=CONFIG["LABEL_SMOOTHING"])
|
|
else:
|
|
loss = F.cross_entropy(logits, targets)
|
|
|
|
loss = loss / CONFIG["GRAD_ACCUM_STEPS"]
|
|
|
|
scaler.scale(loss).backward()
|
|
|
|
if (i + 1) % CONFIG["GRAD_ACCUM_STEPS"] == 0:
|
|
scaler.unscale_(optimizer)
|
|
nn.utils.clip_grad_norm_(model.parameters(), CONFIG["CLIP_GRAD"])
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
|
|
lr = optimizer.param_groups[0]['lr']
|
|
progress_bar.set_postfix({'loss': loss.item() * CONFIG["GRAD_ACCUM_STEPS"], 'lr': lr})
|
|
|
|
train_loss += loss.item() * CONFIG["GRAD_ACCUM_STEPS"]
|
|
|
|
|
|
model.eval()
|
|
val_loss = 0
|
|
with torch.no_grad():
|
|
for inputs, targets in val_loader:
|
|
inputs, targets = inputs.to(device), targets.to(device)
|
|
outputs, _ = model(inputs)
|
|
loss = F.cross_entropy(outputs.view(-1, vocab_size), targets.view(-1))
|
|
val_loss += loss.item()
|
|
|
|
avg_train_loss = train_loss / len(train_loader)
|
|
avg_val_loss = val_loss / len(val_loader)
|
|
scheduler.step(avg_val_loss)
|
|
|
|
|
|
writer.add_scalar('Loss/train', avg_train_loss, epoch)
|
|
writer.add_scalar('Loss/val', avg_val_loss, epoch)
|
|
writer.add_scalar('Learning Rate', optimizer.param_groups[0]['lr'], epoch)
|
|
writer.add_scalar('Perplexity/train', np.exp(avg_train_loss), epoch)
|
|
writer.add_scalar('Perplexity/val', np.exp(avg_val_loss), epoch)
|
|
|
|
print(f'Epoch {epoch+1} | Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f}')
|
|
|
|
|
|
if avg_val_loss < best_val_loss:
|
|
best_val_loss = avg_val_loss
|
|
torch.save({
|
|
'epoch': epoch,
|
|
'model_state_dict': model.state_dict(),
|
|
'optimizer_state_dict': optimizer.state_dict(),
|
|
'scheduler_state_dict': scheduler.state_dict(),
|
|
'config': CONFIG
|
|
}, CONFIG["MODEL_SAVE_PATH"])
|
|
patience_counter = 0
|
|
else:
|
|
patience_counter += 1
|
|
if patience_counter >= CONFIG["EARLY_STOP_PATIENCE"]:
|
|
print("Early stopping triggered")
|
|
break
|
|
|
|
writer.close()
|
|
print(f'Best model saved to {CONFIG["MODEL_SAVE_PATH"]} with validation loss: {best_val_loss:.4f}')
|
|
|
|
|
|
def generate_text(model, start_str, length=200, temperature=CONFIG["TEMPERATURE"],
|
|
top_k=CONFIG["TOP_K"], top_p=CONFIG["TOP_P"]):
|
|
model.eval()
|
|
chars = list(start_str)
|
|
input_seq = torch.tensor([char_to_idx[ch] for ch in chars], device=device).unsqueeze(0)
|
|
|
|
with torch.no_grad():
|
|
for _ in tqdm(range(length), desc="Generating text"):
|
|
mask = nn.Transformer.generate_square_subsequent_mask(input_seq.size(1)).to(device)
|
|
outputs, _ = model(input_seq[:, -CONFIG["SEQ_LENGTH"]:], mask)
|
|
logits = outputs[:, -1] / temperature
|
|
|
|
|
|
if top_p > 0:
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
|
sorted_indices_to_remove[..., 0] = 0
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
|
logits = logits.masked_fill(indices_to_remove, float('-inf'))
|
|
|
|
|
|
if top_k > 0:
|
|
top_k = min(top_k, logits.size(-1))
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
|
logits = logits.masked_fill(indices_to_remove, float('-inf'))
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
|
next_char = torch.multinomial(probs, num_samples=1)
|
|
chars.append(idx_to_char[next_char.item()])
|
|
input_seq = torch.cat([input_seq, next_char], dim=1)
|
|
|
|
return ''.join(chars)
|
|
|
|
|
|
print("\nConservative sampling:")
|
|
print(generate_text(model, "The ", temperature=0.5, top_p=0))
|
|
|
|
print("\nCreative sampling:")
|
|
print(generate_text(model, "Once ", temperature=1.2, top_p=0.9))
|
|
|
|
print("\nTop-k sampling:")
|
|
print(generate_text(model, "In ", top_k=50))
|
|
|
|
print("\nCombined sampling:")
|
|
print(generate_text(model, "Artificial intelligence ", temperature=0.8, top_k=50, top_p=0.9)) |