File size: 3,711 Bytes
c1fcc58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import random
# Hyperparameters
SEQ_LENGTH = 100 # Length of input sequences
BATCH_SIZE = 64
HIDDEN_SIZE = 256
NUM_LAYERS = 2
LEARNING_RATE = 0.001
NUM_EPOCHS = 50
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Dataset Preparation
class CharDataset(Dataset):
def __init__(self, text, seq_length):
self.text = text
self.seq_length = seq_length
self.chars = sorted(list(set(text)))
self.char_to_idx = {c: i for i, c in enumerate(self.chars)}
self.idx_to_char = {i: c for i, c in enumerate(self.chars)}
self.encoded_text = [self.char_to_idx[c] for c in text]
def __len__(self):
return len(self.text) - self.seq_length
def __getitem__(self, idx):
inputs = torch.tensor(self.encoded_text[idx:idx+self.seq_length])
targets = torch.tensor(self.encoded_text[idx+1:idx+self.seq_length+1])
return inputs, targets
# Model Definition
class CharRNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers):
super().__init__()
self.embedding = nn.Embedding(input_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden=None):
x = self.embedding(x)
out, hidden = self.lstm(x, hidden)
out = self.fc(out)
return out, hidden
# Load your text data (replace with your own text file)
with open('dataset.txt', 'r', encoding='utf-8') as f:
text = f.read()
# Create dataset and dataloader
dataset = CharDataset(text, SEQ_LENGTH)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
# Initialize model
model = CharRNN(
input_size=len(dataset.chars),
hidden_size=HIDDEN_SIZE,
output_size=len(dataset.chars),
num_layers=NUM_LAYERS
).to(DEVICE)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# Training loop
for epoch in range(NUM_EPOCHS):
model.train()
total_loss = 0
for inputs, targets in dataloader:
inputs, targets = inputs.to(DEVICE), targets.to(DEVICE)
optimizer.zero_grad()
outputs, _ = model(inputs)
loss = criterion(outputs.view(-1, len(dataset.chars)), targets.view(-1))
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(dataloader)
print(f'Epoch {epoch+1}/{NUM_EPOCHS}, Loss: {avg_loss:.4f}')
# Text generation function
def generate(model, start_str, length=100, temperature=0.8):
model.eval()
chars = [c for c in start_str]
hidden = None
with torch.no_grad():
# Initialize hidden state with starting string
for char in chars[:-1]:
x = torch.tensor([[dataset.char_to_idx[char]]]).to(DEVICE)
_, hidden = model(x, hidden)
# Generate remaining characters
x = torch.tensor([[dataset.char_to_idx[chars[-1]]]]).to(DEVICE)
for _ in range(length):
output, hidden = model(x, hidden)
probs = torch.softmax(output / temperature, dim=-1).cpu()
char_idx = torch.multinomial(probs.view(-1), 1).item()
chars.append(dataset.idx_to_char[char_idx])
x = torch.tensor([[char_idx]]).to(DEVICE)
return ''.join(chars)
# Generate sample text
print(generate(model, start_str="The ", length=500)) |