File size: 3,944 Bytes
c1fcc58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import numpy as np

# Configuration
FILE_PATH = 'dataset.txt'
SEQ_LENGTH = 32
BATCH_SIZE = 8
EPOCHS = 5
EMBEDDING_DIM = 32
HIDDEN_DIM = 64
LEARNING_RATE = 0.01

# Read and process text
with open(FILE_PATH, 'r', encoding='utf-8') as f:
    text = f.read()

# Vocabulary setup
chars = sorted(set(text))
vocab_size = len(chars)
char_to_idx = {ch: i for i, ch in enumerate(chars)}
idx_to_char = {i: ch for i, ch in enumerate(chars)}

# Encode text
encoded_text = np.array([char_to_idx[ch] for ch in text], dtype=np.int64)

# Dataset class
class TextDataset(Dataset):
    def __init__(self, data, seq_length):
        self.data = data
        self.seq_length = seq_length
        
    def __len__(self):
        return len(self.data) - self.seq_length
    
    def __getitem__(self, idx):
        x = torch.tensor(self.data[idx:idx+self.seq_length], dtype=torch.long)
        y = torch.tensor(self.data[idx+1:idx+self.seq_length+1], dtype=torch.long)
        return x, y

dataset = TextDataset(encoded_text, SEQ_LENGTH)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)

# Model architecture
class CharLM(nn.Module):
    def __init__(self):
        super(CharLM, self).__init__()
        self.embedding = nn.Embedding(vocab_size, EMBEDDING_DIM)
        self.rnn = nn.GRU(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True)
        self.fc = nn.Linear(HIDDEN_DIM, vocab_size)
        
    def forward(self, x, hidden=None):
        x = self.embedding(x)
        out, hidden = self.rnn(x, hidden)
        out = self.fc(out)
        return out, hidden

device = torch.device("cpu")
model = CharLM().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)

# Training loop
for epoch in range(EPOCHS):
    model.train()
    total_loss = 0
    
    for inputs, targets in dataloader:
        inputs, targets = inputs.to(device), targets.to(device)

        optimizer.zero_grad()
        outputs, _ = model(inputs)
        loss = criterion(outputs.reshape(-1, vocab_size), targets.reshape(-1))
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    
    print(f'Epoch {epoch+1}/{EPOCHS}, Loss: {total_loss / len(dataloader):.4f}')

# Enhanced Text Generation Function
def generate_text(model, start_str, length=100, temperature=0.7, top_k=0):
    """

    Generate text with temperature scaling and top-k sampling

    temperature: >1.0 more random, <1.0 more conservative

    top_k: 0=no sampling, >0 top-k tokens to consider

    """
    model.eval()
    chars = [ch for ch in start_str]
    input_seq = torch.tensor([char_to_idx[ch] for ch in chars], dtype=torch.long).unsqueeze(0).to(device)
    hidden = None
    
    with torch.no_grad():
        for _ in range(length):
            outputs, hidden = model(input_seq, hidden)
            logits = outputs[0, -1] / temperature

            if top_k > 0:
                top_vals, top_idx = torch.topk(logits, top_k)
                logits[logits < top_vals[-1]] = -float('Inf')
            
            probs = torch.softmax(logits, dim=-1)
            next_char = torch.multinomial(probs, num_samples=1).item()
            chars.append(idx_to_char[next_char])
            input_seq = torch.tensor([[next_char]], dtype=torch.long).to(device)
    
    return ''.join(chars)

# Text generation examples
print("\nGreedy sampling (temperature=0.5):")
print(generate_text(model, "The ", temperature=0.5))

print("\nCreative sampling (temperature=1.2):")
print(generate_text(model, "Once ", temperature=1.2))

print("\nTop-k sampling (k=5):")
print(generate_text(model, "In ", top_k=5))

print("\nCombined (temp=0.7, top_k=3):")
print(generate_text(model, "AI ", temperature=0.7, top_k=3))