File size: 2,740 Bytes
c1fcc58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python
import os
import logging
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    Trainer,
    TrainingArguments,
    DataCollatorForLanguageModeling,
)
from datasets import load_dataset

# Setup logging for progress messages
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# 1. Load the pre-trained tokenizer and model
model_name = "sshleifer/tiny-gpt2"  # Using GPT-2 as a small language model example
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Check if a padding token is defined; if not, set it.
if tokenizer.pad_token is None:
    # Option 1: Use the end-of-sequence token as the padding token.
    tokenizer.pad_token = tokenizer.eos_token
    # Option 2 (uncomment to use a dedicated PAD token):
    # tokenizer.add_special_tokens({'pad_token': '[PAD]'})
    # After adding special tokens, resize model embeddings:
    # model.resize_token_embeddings(len(tokenizer))

# Load the pre-trained model.
model = AutoModelForCausalLM.from_pretrained(model_name)

# 2. Prepare the dataset
# For demonstration, we use the Wikitext-2 raw dataset.
dataset = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")

# Define a tokenization function.
def tokenize_function(examples):
    # Tokenize texts with padding (to max_length) and truncation.
    # Here, we set max_length=512. Adjust as needed.
    return tokenizer(
        examples["text"],
        truncation=True,
        max_length=32,
        padding="max_length"
    )

# Apply the tokenization function over the dataset.
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["text"])

# 3. Create a data collator for language modeling (no masked LM).
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

# 4. Setup training arguments
training_args = TrainingArguments(
    output_dir="./gpt2-finetuned",
    overwrite_output_dir=True,
    num_train_epochs=1,              # Adjust the number of epochs as needed
    per_device_train_batch_size=8,   # Adjust based on your available GPU memory
    save_steps=500,
    save_total_limit=2,
    logging_steps=100,
    prediction_loss_only=True,       # Useful for language modeling tasks
)

# 5. Initialize the Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset,
    data_collator=data_collator,
)

# 6. Start training
logger.info("Starting training...")
trainer.train()

# 7. Save the fine-tuned model and tokenizer
model.save_pretrained("./gpt2-finetuned")
tokenizer.save_pretrained("./gpt2-finetuned")
logger.info("Training complete and model saved.")