File size: 2,268 Bytes
c1fcc58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import torch
import torch.nn as nn
# Configuration
MODEL_SAVE_PATH = "char_lm_model.pth"
SEQ_LENGTH = 32
EMBEDDING_DIM = 64
HIDDEN_DIM = 64
# Load vocabulary
with open('dataset.txt', 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
char_to_idx = {ch: i for i, ch in enumerate(chars)}
idx_to_char = {i: ch for i, ch in enumerate(chars)}
# Model architecture
class CharLM(nn.Module):
def __init__(self):
super(CharLM, self).__init__()
self.embedding = nn.Embedding(vocab_size, EMBEDDING_DIM)
self.rnn = nn.GRU(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True)
self.fc = nn.Linear(HIDDEN_DIM, vocab_size)
def forward(self, x, hidden=None):
x = self.embedding(x)
out, hidden = self.rnn(x, hidden)
out = self.fc(out)
return out, hidden
# Load the trained model
model = CharLM()
model.load_state_dict(torch.load(MODEL_SAVE_PATH))
model.eval()
def generate_text(model, start_str, length=100, temperature=0.7, top_k=0):
"""
Generate text with temperature scaling and top-k sampling
"""
model.eval()
chars = [ch for ch in start_str]
input_seq = torch.tensor([char_to_idx[ch] for ch in chars]).unsqueeze(0)
hidden = None
with torch.no_grad():
for _ in range(length):
outputs, hidden = model(input_seq, hidden)
logits = outputs[0, -1] / temperature
if top_k > 0:
top_vals, top_idx = torch.topk(logits, top_k)
logits[logits < top_vals[-1]] = -float('Inf')
probs = torch.softmax(logits, dim=-1)
next_char = torch.multinomial(probs, num_samples=1).item()
chars.append(idx_to_char[next_char])
input_seq = torch.tensor([[next_char]])
return ''.join(chars)
# Chat loop
def chat():
print("Chat with the model! Type 'exit' to stop.")
while True:
user_input = input("You: ")
if user_input.lower() == 'exit':
break
response = generate_text(model, user_input, length=100, temperature=0.7, top_k=5)
print("Bot:", response)
chat()
|