File size: 1,810 Bytes
c1fcc58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
#!/usr/bin/env python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Define the directory where your fine-tuned model is saved.
model_dir = "./gpt2-finetuned"
# Load the tokenizer and model from the saved directory.
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(model_dir)
# If you are using GPU and it's available, move the model to GPU.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print("Chat with the model! Type 'exit' or 'quit' to end the conversation.")
while True:
# Get user input.
user_input = input("You: ")
if user_input.lower() in ["exit", "quit"]:
print("Exiting chat.")
break
# Encode the input text and generate an attention mask.
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True)
input_ids = inputs["input_ids"].to(device)
attention_mask = inputs["attention_mask"].to(device) # Explicitly set the attention mask
# Generate a response. You can tweak the generation parameters as needed.
output_ids = model.generate(
input_ids,
attention_mask=attention_mask, # Pass the attention mask here
max_length=100, # Maximum length of the generated response.
do_sample=True, # Use sampling; set to False for greedy decoding.
top_p=0.95, # Top-p (nucleus) sampling.
top_k=50, # Top-k sampling.
pad_token_id=tokenizer.eos_token_id # Avoid warnings if no pad token is defined.
)
# Decode the generated tokens to a string.
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print("Bot:", response)
|