File size: 4,685 Bytes
c1fcc58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import torch
import numpy as np
# Configuration (MUST match training configuration)
CONFIG = {
"FILE_PATH": 'dataset.txt',
"SEQ_LENGTH": 32,
"EMBEDDING_DIM": 64,
"HIDDEN_DIM": 64,
"NUM_LAYERS": 1,
"DROPOUT": 0.2,
"MODEL_SAVE_PATH": "char_lm_advanced.pth",
"TEMPERATURE": 0.7,
"TOP_K": 5,
"TOP_P": 0.95
}
# Load vocabulary
with open(CONFIG["FILE_PATH"], 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(list(set(text)))
char_to_idx = {ch: i for i, ch in enumerate(chars)}
idx_to_char = {i: ch for i, ch in enumerate(chars)}
vocab_size = len(chars)
# Model definition (must match training architecture)
class CharLM(torch.nn.Module):
def __init__(self):
super(CharLM, self).__init__()
self.embedding = torch.nn.Embedding(vocab_size, CONFIG["EMBEDDING_DIM"])
self.lstm = torch.nn.LSTM(
CONFIG["EMBEDDING_DIM"],
CONFIG["HIDDEN_DIM"],
num_layers=CONFIG["NUM_LAYERS"],
dropout=CONFIG["DROPOUT"] if CONFIG["NUM_LAYERS"] > 1 else 0,
batch_first=True
)
self.dropout = torch.nn.Dropout(CONFIG["DROPOUT"])
self.fc = torch.nn.Linear(CONFIG["HIDDEN_DIM"], vocab_size)
def forward(self, x, hidden=None):
x = self.embedding(x)
out, hidden = self.lstm(x, hidden)
out = self.dropout(out)
out = self.fc(out)
return out, hidden
# Load trained model
model = CharLM()
model.load_state_dict(torch.load(CONFIG["MODEL_SAVE_PATH"]))
model.eval()
def generate_text(model, start_str, length=200, temperature=CONFIG["TEMPERATURE"],
top_k=CONFIG["TOP_K"], top_p=CONFIG["TOP_P"]):
"""
Generate text with temperature scaling, top-k, and nucleus (top-p) sampling
"""
model.eval()
chars = list(start_str)
input_seq = torch.tensor([char_to_idx[ch] for ch in chars]).unsqueeze(0)
hidden = None
with torch.no_grad():
for _ in range(length):
outputs, hidden = model(input_seq, hidden)
logits = outputs[0, -1] / temperature
# Apply top-k filtering
if top_k > 0:
top_vals, top_idx = torch.topk(logits, top_k)
logits[logits < top_vals[-1]] = -float('Inf')
# Apply nucleus (top-p) filtering
if top_p > 0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = -float('Inf')
probs = torch.softmax(logits, dim=-1)
next_char = torch.multinomial(probs, num_samples=1).item()
chars.append(idx_to_char[next_char])
input_seq = torch.tensor([[next_char]])
return ''.join(chars)
# Interactive loop
while True:
try:
print("\n" + "="*50)
prompt = input("Enter your starting text (or 'exit' to quit):\n> ")
if prompt.lower() == 'exit':
print("Goodbye!")
break
# Filter invalid characters
valid_prompt = [c for c in prompt if c in char_to_idx]
if not valid_prompt:
print("Please use characters from the training data.")
continue
# Get generation parameters
length = int(input("Output length (50-500 recommended): ")) or 200
temp = float(input(f"Temperature [{CONFIG['TEMPERATURE']}]: ") or CONFIG["TEMPERATURE"])
top_k = int(input(f"Top-K [{CONFIG['TOP_K']}]: ") or CONFIG["TOP_K"])
top_p = float(input(f"Top-P [{CONFIG['TOP_P']}]: ") or CONFIG["TOP_P"])
# Generate and display
print("\nGenerating...")
generated = generate_text(
model,
''.join(valid_prompt),
length=length,
temperature=temp,
top_k=top_k,
top_p=top_p
)
print("\nGenerated Text:")
print(generated)
print("="*50)
except ValueError:
print("Invalid input! Please enter valid numbers for parameters.")
except KeyboardInterrupt:
print("\nExiting...")
break |