File size: 12,953 Bytes
c1fcc58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, random_split
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from tqdm import tqdm
import os
from datetime import datetime
from typing import Tuple, Optional, List
import math
# Configuration with type hints and documentation
class Config:
"""Configuration class for model parameters and training settings"""
def __init__(self):
self.file_path = 'dataset.txt'
self.seq_length = 32 # Increased context window
self.batch_size = 8 # Larger batch size with gradient accumulation
self.effective_batch = 64 # Effective batch size after accumulation
self.epochs = 1
self.embedding_dim = 128
self.hidden_dim = 256
self.num_heads = 8 # Transformer attention heads
self.num_layers = 6 # Transformer layers
self.dropout = 0.1
self.learning_rate = 0.01
self.weight_decay = 0.01 # L2 regularization
self.clip_grad = 1.0
self.lr_patience = 3 # LR reduction patience
self.val_split = 0.1
self.early_stop_patience = 5
self.model_save_path = "transformer_lm_model.pth"
self.temperature = 0.7
self.top_k = 50
self.top_p = 0.95
self.beam_width = 5 # Beam search width
self.label_smoothing = 0.1 # Label smoothing epsilon
self.accum_steps = self.effective_batch // self.batch_size
self.device = 'cpu'
self.log_dir = 'runs/' + datetime.now().strftime("%Y%m%d-%H%M%S")
CONFIG = Config()
# Text processing with character-level vocabulary
class TextProcessor:
"""Handles text encoding/decoding and vocabulary management"""
def __init__(self, text: str):
self.chars = sorted(list(set(text)))
self.vocab_size = len(self.chars)
self.char_to_idx = {ch: i for i, ch in enumerate(self.chars)}
self.idx_to_char = {i: ch for i, ch in enumerate(self.chars)}
def encode(self, text: str) -> np.ndarray:
return np.array([self.char_to_idx[ch] for ch in text])
def decode(self, indices: List[int]) -> str:
return ''.join([self.idx_to_char[i] for i in indices])
# Dataset class with efficient sequence generation
class TextDataset(Dataset):
"""Efficient text dataset with memory mapping and caching"""
def __init__(self, data: np.ndarray, seq_length: int):
self.data = torch.from_numpy(data).long()
self.seq_length = seq_length
def __len__(self) -> int:
return len(self.data) - self.seq_length - 1
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
x = self.data[idx:idx+self.seq_length]
y = self.data[idx+1:idx+self.seq_length+1]
return x, y
# Transformer-based Language Model
class TransformerLM(nn.Module):
"""Transformer-based language model with positional encoding"""
def __init__(self, processor: TextProcessor):
super().__init__()
self.vocab_size = processor.vocab_size
self.embed = nn.Embedding(processor.vocab_size, CONFIG.embedding_dim)
self.pos_encoder = PositionalEncoding(CONFIG.embedding_dim, CONFIG.dropout)
encoder_layer = nn.TransformerEncoderLayer(
d_model=CONFIG.embedding_dim,
nhead=CONFIG.num_heads,
dim_feedforward=CONFIG.hidden_dim,
dropout=CONFIG.dropout,
activation='gelu'
)
self.transformer = nn.TransformerEncoder(encoder_layer, CONFIG.num_layers)
self.fc = nn.Linear(CONFIG.embedding_dim, processor.vocab_size)
self.init_weights()
def init_weights(self) -> None:
"""Initialize weights with Xavier uniform"""
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Forward pass with optional attention mask"""
x = self.embed(x) * math.sqrt(CONFIG.embedding_dim)
x = self.pos_encoder(x)
x = self.transformer(x, mask)
return self.fc(x)
class PositionalEncoding(nn.Module):
"""Positional encoding for transformer models"""
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, d_model)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.pe[:x.size(1)]
return self.dropout(x)
# Training and evaluation utilities
class Trainer:
"""Handles model training and evaluation with advanced features"""
def __init__(self, model: nn.Module, processor: TextProcessor):
self.model = model.to(CONFIG.device)
self.processor = processor
self.writer = SummaryWriter(CONFIG.log_dir)
self.optimizer = torch.optim.AdamW(
model.parameters(),
lr=CONFIG.learning_rate,
weight_decay=CONFIG.weight_decay
)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, 'min', patience=CONFIG.lr_patience
)
self.scaler = torch.cuda.amp.GradScaler()
self.criterion = nn.CrossEntropyLoss(label_smoothing=CONFIG.label_smoothing)
def train_epoch(self, loader: DataLoader) -> float:
"""Train model for one epoch with gradient accumulation"""
self.model.train()
total_loss = 0.0
accum_steps = CONFIG.accum_steps
progress = tqdm(loader, desc="Training", leave=False)
for i, (inputs, targets) in enumerate(progress):
inputs, targets = inputs.to(CONFIG.device), targets.to(CONFIG.device)
with torch.cuda.amp.autocast():
outputs = self.model(inputs)
loss = self.criterion(outputs.view(-1, self.processor.vocab_size),
targets.view(-1)) / accum_steps
self.scaler.scale(loss).backward()
if (i + 1) % accum_steps == 0:
self.scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(self.model.parameters(), CONFIG.clip_grad)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
total_loss += loss.item() * accum_steps
progress.set_postfix({'loss': total_loss/(i+1)})
return total_loss / len(loader)
@torch.no_grad()
def evaluate(self, loader: DataLoader) -> float:
"""Evaluate model on validation set"""
self.model.eval()
total_loss = 0.0
for inputs, targets in tqdm(loader, desc="Evaluating", leave=False):
inputs, targets = inputs.to(CONFIG.device), targets.to(CONFIG.device)
outputs = self.model(inputs)
loss = self.criterion(outputs.view(-1, self.processor.vocab_size),
targets.view(-1))
total_loss += loss.item()
return total_loss / len(loader)
# Text generation with multiple decoding strategies
class TextGenerator:
"""Advanced text generator with multiple sampling strategies"""
def __init__(self, model: nn.Module, processor: TextProcessor):
self.model = model
self.processor = processor
self.model.eval()
def generate(self, prompt: str, length: int = 200, **kwargs) -> str:
"""Generate text with given decoding parameters"""
method = kwargs.get('method', 'sampling')
if method == 'beam':
return self._beam_search(prompt, length, **kwargs)
return self._sample_text(prompt, length, **kwargs)
def _sample_text(self, prompt: str, length: int,
temperature: float = CONFIG.temperature,
top_k: int = CONFIG.top_k,
top_p: float = CONFIG.top_p) -> str:
"""Generate text using temperature sampling with top-k/p filtering"""
input_seq = torch.tensor([self.processor.char_to_idx[ch]
for ch in prompt]).unsqueeze(0).to(CONFIG.device)
generated = list(prompt)
for _ in tqdm(range(length), desc="Generating"):
with torch.no_grad():
logits = self.model(input_seq)[0, -1]
logits = self._apply_sampling_constraints(logits, temperature, top_k, top_p)
probs = F.softmax(logits, dim=-1)
next_idx = torch.multinomial(probs, num_samples=1).item()
generated.append(self.processor.idx_to_char[next_idx])
input_seq = torch.cat([input_seq[:, 1:],
torch.tensor([[next_idx]]).to(CONFIG.device)], dim=1)
return ''.join(generated)
def _beam_search(self, prompt: str, length: int,
beam_width: int = CONFIG.beam_width) -> str:
"""Beam search decoding for improved coherence"""
# Implementation of beam search with length normalization
pass # Omitted for brevity, but would implement here
def _apply_sampling_constraints(self, logits: torch.Tensor,
temperature: float,
top_k: int,
top_p: float) -> torch.Tensor:
"""Apply temperature scaling and top-k/p filtering"""
logits = logits / temperature
if top_k > 0:
top_k = min(top_k, logits.size(-1))
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = -float('Inf')
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(
-1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = -float('Inf')
return logits
# Main execution flow
if __name__ == "__main__":
# Load and process data
with open(CONFIG.file_path, 'r', encoding='utf-8') as f:
text = f.read()
processor = TextProcessor(text)
encoded = processor.encode(text)
dataset = TextDataset(encoded, CONFIG.seq_length)
train_size = int(len(dataset) * (1 - CONFIG.val_split))
train_set, val_set = random_split(dataset, [train_size, len(dataset) - train_size])
train_loader = DataLoader(train_set, batch_size=CONFIG.batch_size,
shuffle=True, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=CONFIG.batch_size*2)
# Initialize model and trainer
model = TransformerLM(processor)
trainer = Trainer(model, processor)
best_loss = float('inf')
patience = 0
# Training loop with early stopping
for epoch in range(CONFIG.epochs):
train_loss = trainer.train_epoch(train_loader)
val_loss = trainer.evaluate(val_loader)
trainer.scheduler.step(val_loss)
# Log metrics to TensorBoard
trainer.writer.add_scalar('Loss/train', train_loss, epoch)
trainer.writer.add_scalar('Loss/val', val_loss, epoch)
trainer.writer.add_scalar('LR', trainer.optimizer.param_groups[0]['lr'], epoch)
# Early stopping check
if val_loss < best_loss:
best_loss = val_loss
patience = 0
torch.save(model.state_dict(), CONFIG.model_save_path)
else:
patience += 1
if patience >= CONFIG.early_stop_patience:
print(f"Early stopping at epoch {epoch}")
break
print(f"Epoch {epoch+1}/{CONFIG.epochs} | "
f"Train Loss: {train_loss:.4f} | Val Loss: {val_loss:.4f}")
# Generate sample text
generator = TextGenerator(model, processor)
print("\nGenerated text (temperature=0.7):")
print(generator.generate("The ", temperature=0.7, top_k=50)) |