File size: 7,552 Bytes
c1fcc58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import numpy as np
from tqdm import tqdm

# Configuration
CONFIG = {
    "FILE_PATH": 'dataset.txt',
    "SEQ_LENGTH": 32,          # Increased context window
    "BATCH_SIZE": 512,          # Increased batch size
    "EPOCHS": 20,
    "EMBEDDING_DIM": 64,
    "HIDDEN_DIM": 64,
    "NUM_LAYERS": 1,           # Multi-layer LSTM
    "DROPOUT": 0.1,
    "LEARNING_RATE": 0.01,
    "CLIP_GRAD": 1.0,          # Gradient clipping
    "LR_GAMMA": 0.95,          # Learning rate decay
    "VAL_SPLIT": 0.1,          # Validation split
    "EARLY_STOP_PATIENCE": 3,  # Early stopping patience
    "MODEL_SAVE_PATH": "char_lm_model.pth",
    "TEMPERATURE": 0.7,
    "TOP_K": 5,
    "TOP_P": 0.95
}

# Read and process text
with open(CONFIG["FILE_PATH"], 'r', encoding='utf-8') as f:
    text = f.read()

# Vocabulary setup
chars = sorted(list(set(text)))
vocab_size = len(chars)
char_to_idx = {ch: i for i, ch in enumerate(chars)}
idx_to_char = {i: ch for i, ch in enumerate(chars)}

# Encode text
encoded_text = np.array([char_to_idx[ch] for ch in text])

# Dataset class with train-val split
class TextDataset(Dataset):
    def __init__(self, data, seq_length):
        self.data = data
        self.seq_length = seq_length
        
    def __len__(self):
        return len(self.data) - self.seq_length - 1
    
    def __getitem__(self, idx):
        x = self.data[idx:idx+self.seq_length]
        y = self.data[idx+1:idx+self.seq_length+1]
        return torch.from_numpy(x).long(), torch.from_numpy(y).long()

dataset = TextDataset(encoded_text, CONFIG["SEQ_LENGTH"])
val_size = int(len(dataset) * CONFIG["VAL_SPLIT"])
train_size = len(dataset) - val_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])

train_loader = DataLoader(train_dataset, batch_size=CONFIG["BATCH_SIZE"], shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=CONFIG["BATCH_SIZE"])

# Advanced Model architecture with LSTM and dropout
class CharLM(nn.Module):
    def __init__(self):
        super(CharLM, self).__init__()
        self.embedding = nn.Embedding(vocab_size, CONFIG["EMBEDDING_DIM"])
        self.lstm = nn.LSTM(
            CONFIG["EMBEDDING_DIM"], 
            CONFIG["HIDDEN_DIM"],
            num_layers=CONFIG["NUM_LAYERS"],
            dropout=CONFIG["DROPOUT"] if CONFIG["NUM_LAYERS"] > 1 else 0,
            batch_first=True
        )
        self.dropout = nn.Dropout(CONFIG["DROPOUT"])
        self.fc = nn.Linear(CONFIG["HIDDEN_DIM"], vocab_size)
        
        self.init_weights()
        
    def init_weights(self):
        # Initialize weights for better convergence
        nn.init.xavier_uniform_(self.embedding.weight)
        for name, param in self.lstm.named_parameters():
            if 'weight_ih' in name:
                nn.init.xavier_uniform_(param.data)
            elif 'weight_hh' in name:
                nn.init.orthogonal_(param.data)
            elif 'bias' in name:
                param.data.fill_(0)
        
    def forward(self, x, hidden=None):
        x = self.embedding(x)
        out, hidden = self.lstm(x, hidden)
        out = self.dropout(out)
        out = self.fc(out)
        return out, hidden

model = CharLM()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=CONFIG["LEARNING_RATE"])
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=CONFIG["LR_GAMMA"])

# Training loop with validation and early stopping
best_val_loss = float('inf')
patience_counter = 0

for epoch in range(CONFIG["EPOCHS"]):
    model.train()
    train_loss = 0
    progress_bar = tqdm(train_loader, desc=f'Epoch {epoch+1}/{CONFIG["EPOCHS"]}')
    
    for inputs, targets in progress_bar:
        optimizer.zero_grad()
        outputs, _ = model(inputs)
        loss = criterion(outputs.reshape(-1, vocab_size), targets.reshape(-1))
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), CONFIG["CLIP_GRAD"])
        optimizer.step()
        train_loss += loss.item()
        progress_bar.set_postfix({'loss': loss.item()})
    
    # Validation phase
    model.eval()
    val_loss = 0
    with torch.no_grad():
        for inputs, targets in val_loader:
            outputs, _ = model(inputs)
            loss = criterion(outputs.reshape(-1, vocab_size), targets.reshape(-1))
            val_loss += loss.item()
    
    avg_train_loss = train_loss / len(train_loader)
    avg_val_loss = val_loss / len(val_loader)
    print(f'Epoch {epoch+1} | Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f}')
    
    # Early stopping and checkpointing
    if avg_val_loss < best_val_loss:
        best_val_loss = avg_val_loss
        torch.save(model.state_dict(), CONFIG["MODEL_SAVE_PATH"])
        patience_counter = 0
    else:
        patience_counter += 1
        if patience_counter >= CONFIG["EARLY_STOP_PATIENCE"]:
            print("Early stopping triggered")
            break
    
    scheduler.step()

print(f'Best model saved to {CONFIG["MODEL_SAVE_PATH"]} with validation loss: {best_val_loss:.4f}')

# Advanced Text Generation with multiple sampling methods
def generate_text(model, start_str, length=200, temperature=CONFIG["TEMPERATURE"], 

                 top_k=CONFIG["TOP_K"], top_p=CONFIG["TOP_P"]):
    """

    Generate text with temperature scaling, top-k, and nucleus (top-p) sampling

    """
    model.eval()
    chars = list(start_str)
    input_seq = torch.tensor([char_to_idx[ch] for ch in chars]).unsqueeze(0)
    hidden = None
    
    with torch.no_grad():
        for _ in tqdm(range(length), desc="Generating text"):
            outputs, hidden = model(input_seq, hidden)
            logits = outputs[0, -1] / temperature
            
            # Apply top-k filtering
            if top_k > 0:
                top_vals, top_idx = torch.topk(logits, top_k)
                logits[logits < top_vals[-1]] = -float('Inf')
            
            # Apply nucleus (top-p) filtering
            if top_p > 0:
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                sorted_indices_to_remove[..., 0] = 0
                indices_to_remove = sorted_indices[sorted_indices_to_remove]
                logits[indices_to_remove] = -float('Inf')

            probs = torch.softmax(logits, dim=-1)
            next_char = torch.multinomial(probs, num_samples=1).item()
            chars.append(idx_to_char[next_char])
            input_seq = torch.tensor([[next_char]])
    
    return ''.join(chars)

# Generation examples with different parameters
print("\nConservative sampling (temperature=0.5):")
print(generate_text(model, "The ", temperature=0.5))

print("\nCreative sampling (temperature=1.2, top_p=0.9):")
print(generate_text(model, "Once ", temperature=1.2, top_p=0.9))

print("\nTop-k sampling (k=5):")
print(generate_text(model, "In ", top_k=5))

print("\nCombined sampling (temp=0.7, top_k=3, top_p=0.9):")
print(generate_text(model, "Artificial is ", temperature=0.7, top_k=3, top_p=0.9))