File size: 5,005 Bytes
6e66252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import torch.nn as nn
import torch.optim as optim

# 1. Prepare the Dataset

def prepare_dataset(filepath, seq_length):
    """

    Prepares the dataset for training from a text file.



    Args:

        filepath (str): Path to the text file (e.g., 'dataset.txt').

        seq_length (int): The length of input sequences.



    Returns:

        tuple: vocab (set), char_to_index (dict), index_to_char (dict),

               input_sequences (list), target_sequences (list)

    """
    try:
        with open(filepath, 'r', encoding='utf-8') as file:
            text = file.read()
    except FileNotFoundError:
        print(f"Error: File '{filepath}' not found. Make sure the file exists in the correct directory.")
        return None, None, None, None, None

    vocab = sorted(list(set(text)))
    char_to_index = {char: index for index, char in enumerate(vocab)}
    index_to_char = {index: char for index, char in enumerate(vocab)}

    input_sequences = []
    target_sequences = []

    for i in range(0, len(text) - seq_length):
        input_seq = text[i:i + seq_length]
        target_seq = text[i + seq_length]
        input_sequences.append([char_to_index[char] for char in input_seq])
        target_sequences.append(char_to_index[target_seq])

    return vocab, char_to_index, index_to_char, input_sequences, target_sequences


# 2. Define the Language Model (Simple RNN)

class SimpleRNNLM(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers):
        super(SimpleRNNLM, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.RNN(embedding_dim, hidden_dim, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_dim, vocab_size)

    def forward(self, input_seq, hidden):
        embedded = self.embedding(input_seq)
        output, hidden = self.rnn(embedded, hidden)
        output = self.fc(output[:, -1, :])
        return output, hidden

    def init_hidden(self, batch_size, num_layers, hidden_dim):
        return torch.zeros(num_layers, batch_size, hidden_dim)


# Example Usage
dataset_filepath = 'dataset.txt'  # Path to your dataset text file
seq_length = 64

vocab, char_to_index, index_to_char, input_seqs, target_seqs = prepare_dataset(dataset_filepath, seq_length)

if vocab is None:
    exit()

print(f"Vocabulary Size: {len(vocab)}")
print(f"Number of Input Sequences: {len(input_seqs)}")


# 3. Instantiate Model, Loss Function, and Optimizer

vocab_size = len(vocab)
embedding_dim = 32
hidden_dim = 64
num_layers = 1
learning_rate = 0.01
num_epochs = 10

model = SimpleRNNLM(vocab_size, embedding_dim, hidden_dim, num_layers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

device = torch.device("cpu")
model.to(device)
criterion.to(device)


# 4. Training Loop

batch_size = 256

for epoch in range(num_epochs):
    model.train()
    total_loss = 0

    for i in range(0, len(input_seqs), batch_size):
        input_batch = input_seqs[i:i+batch_size]
        target_batch = target_seqs[i:i+batch_size]

        input_batch_tensor = torch.LongTensor(input_batch).to(device)
        target_batch_tensor = torch.LongTensor(target_batch).to(device)

        hidden = model.init_hidden(len(input_batch), num_layers, hidden_dim).to(device)

        optimizer.zero_grad()

        output, hidden = model(input_batch_tensor, hidden)
        loss = criterion(output, target_batch_tensor)

        loss.backward()
        optimizer.step()

        total_loss += loss.item()

    average_loss = total_loss / (len(input_seqs) // batch_size + (len(input_seqs) % batch_size != 0))
    print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {average_loss:.4f}")


# 5. Text Generation

def generate_text(model, start_text, predict_len, char_to_index, index_to_char, vocab, device):
    model.eval()
    generated_text = start_text

    input_sequence = [char_to_index[char] for char in start_text]
    input_tensor = torch.LongTensor([input_sequence]).to(device)

    hidden = model.init_hidden(1, num_layers, hidden_dim).to(device)

    with torch.no_grad():
        for _ in range(predict_len):
            output, hidden = model(input_tensor, hidden)

            probabilities = torch.softmax(output, dim=1)
            predicted_index = torch.multinomial(probabilities, 1).item()
            predicted_char = index_to_char[predicted_index]

            generated_text += predicted_char

            input_sequence = input_sequence[1:] + [predicted_index]
            input_tensor = torch.LongTensor([input_sequence]).to(device)

    return generated_text


# Example Generation
start_text = "The "
predict_length = 500

generated_output = generate_text(model, start_text, predict_length, char_to_index, index_to_char, vocab, device)
print("\nGenerated Text:")
print(generated_output)