File size: 5,110 Bytes
6e66252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import nltk
from nltk.util import ngrams
from collections import Counter
import numpy as np

# Download NLTK resources if you haven't already
nltk.download('punkt')

nltk.download('stopwords')


class TextDataset(Dataset):
    def __init__(self, filepath, n=3, min_freq=1):  # n-gram size, minimum frequency
        self.n = n
        self.data = self.load_and_preprocess(filepath, min_freq)

    def load_and_preprocess(self, filepath, min_freq):
        with open(filepath, 'r', encoding='utf-8') as f:  # Handle encoding
            text = f.read()

        # Tokenization and lowercasing
        tokens = nltk.word_tokenize(text.lower())

        # N-gram creation and frequency counting
        n_grams = ngrams(tokens, self.n)
        ngram_counts = Counter(n_grams)

        # Filtering based on minimum frequency
        filtered_ngrams = [ngram for ngram, count in ngram_counts.items() if count >= min_freq]

        # Vocabulary creation
        self.vocabulary = sorted(set(token for ngram in filtered_ngrams for token in ngram))
        self.word_to_index = {word: index for index, word in enumerate(self.vocabulary)}
        self.index_to_word = {index: word for word, index in self.word_to_index.items()}

        # Data preparation for PyTorch
        data = []
        for ngram in filtered_ngrams:
            context = [self.word_to_index[token] for token in ngram[:-1]]
            target = self.word_to_index[ngram[-1]]
            data.append((context, target))
        return data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        context, target = self.data[idx]
        return torch.tensor(context), torch.tensor(target)


class LanguageModel(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim):
        super(LanguageModel, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)  # Use LSTM
        self.linear = nn.Linear(hidden_dim, vocab_size)

    def forward(self, context):
        embedded = self.embedding(context)
        output, _ = self.lstm(embedded)  # LSTM output
        output = self.linear(output[:, -1, :])  # Get the last timestep's output
        return output


# Training parameters
filepath = 'dataset.txt'  # Replace with your dataset file
n_gram_size = 3
min_frequency = 2  # Adjust as needed
embedding_dimension = 32
hidden_dimension = 64
learning_rate = 0.01
batch_size = 32
epochs = 10

# Data loading and preprocessing
dataset = TextDataset(filepath, n_gram_size, min_frequency)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# Model initialization
vocab_size = len(dataset.vocabulary)
model = LanguageModel(vocab_size, embedding_dimension, hidden_dimension)

# Loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# Training loop
for epoch in range(epochs):
    for contexts, targets in dataloader:
        optimizer.zero_grad()
        outputs = model(contexts)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

    print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}")

# Save the trained model
torch.save(model.state_dict(), 'language_model.pth')

print("Training complete. Model saved as language_model.pth")



# Example of text generation (after training and loading)
def generate_text(model, dataset, start_sequence="the", max_length=50):
    model.eval()  # Set to evaluation mode
    tokens = start_sequence.split() # start sequence as list of tokens
    context = [dataset.word_to_index[token] for token in tokens]
    context_tensor = torch.tensor([context]) # wrap the context list to a tensor and add one dimension

    generated_text = tokens[:] # start with the start sequence

    for _ in range(max_length):
        with torch.no_grad():
            output = model(context_tensor)
            predicted_index = torch.argmax(output).item()
            predicted_word = dataset.index_to_word[predicted_index]
            generated_text.append(predicted_word)
            context.append(predicted_index) # update context with the new predicted word
            context = context[-n_gram_size+1:] # keep the context of n-gram size
            context_tensor = torch.tensor([context]) # update the context tensor
            
            if predicted_word == ".": # stop if the predicted word is end of sentence
                break

    return " ".join(generated_text)

# Example usage (after training and saving)
# Load the model
model = LanguageModel(vocab_size, embedding_dimension, hidden_dimension)
model.load_state_dict(torch.load('language_model.pth'))
model.eval()

generated_text = generate_text(model, dataset, start_sequence="the quick brown")
print(generated_text)