File size: 6,448 Bytes
1be8a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import cv2
import numpy as np
import time
from sklearn.neighbors import KNeighborsClassifier
from collections import defaultdict, deque

# Create background subtractor for motion detection
back_sub = cv2.createBackgroundSubtractorKNN(history=500, dist2Threshold=400, detectShadows=True)
cap = cv2.VideoCapture(0)

# Store object traces
object_traces = defaultdict(lambda: deque(maxlen=30))  # Last 30 points of each object
object_last_seen = {}
object_id_counter = 0

# For real-time learning
knn = KNeighborsClassifier(n_neighbors=3)
features_set = []
labels_set = []

# Timer for real-time learning and training interval
start_time = time.time()
training_interval = 5  # 5 seconds for real-time training

# Variable to avoid predicting before training
is_trained = False

# Memory storage for past predictions and features (long-term memory)
long_term_memory = defaultdict(list)  # Store memory of features and predictions for each object

# Function to apply noise reduction (post-processing)
def apply_noise_reduction(mask):
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
    mask = cv2.dilate(mask, kernel, iterations=1)
    return mask

def get_centroid(x, y, w, h):
    return (int(x + w / 2), int(y + h / 2))

# Function to calculate the direction of movement
def calculate_direction(trace):
    if len(trace) < 2:
        return "-"
    dx = trace[-1][0] - trace[0][0]
    dy = trace[-1][1] - trace[0][1]
    if abs(dx) > abs(dy):
        return "Left" if dx < 0 else "Right"
    else:
        return "Up" if dy < 0 else "Down"

# Function to calculate speed based on trace distance and duration
def calculate_speed(trace, duration):
    if len(trace) < 2 or duration == 0:
        return 0
    dist = np.linalg.norm(np.array(trace[-1]) - np.array(trace[0]))
    return dist / duration

# Function to count the number of direction changes (for complexity detection)
def count_direction_changes(trace):
    changes = 0
    for i in range(2, len(trace)):
        dx1 = trace[i-1][0] - trace[i-2][0]
        dx2 = trace[i][0] - trace[i-1][0]
        if dx1 * dx2 < 0:  # Horizontal direction change
            changes += 1
    return changes

# Function to check if an object is old (not detected for a while)
def is_old_object(object_id, threshold_time=10):
    # Threshold time is how long since last seen for the object to be considered "old"
    if time.time() - object_last_seen[object_id] > threshold_time:
        return True
    return False

while True:
    ret, frame = cap.read()
    if not ret:
        break

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    fg_mask = back_sub.apply(frame)
    fg_mask = apply_noise_reduction(fg_mask)

    contours, _ = cv2.findContours(fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    current_ids = []
    predicted = 1  # Default prediction value (if no prediction is made)
    for cnt in contours:
        area = cv2.contourArea(cnt)
        if area < 150:
            continue

        x, y, w, h = cv2.boundingRect(cnt)
        centroid = get_centroid(x, y, w, h)

        # Identify or create a new ID for the object
        matched_id = None
        for oid, trace in object_traces.items():
            if np.linalg.norm(np.array(trace[-1]) - np.array(centroid)) < 50:
                matched_id = oid
                break

        if matched_id is None:
            matched_id = object_id_counter
            object_id_counter += 1

        object_traces[matched_id].append(centroid)
        object_last_seen[matched_id] = time.time()
        current_ids.append(matched_id)

        trace = object_traces[matched_id]
        duration = time.time() - object_last_seen[matched_id] + 0.001
        speed = calculate_speed(trace, duration)
        direction = calculate_direction(trace)
        direction_changes = count_direction_changes(trace)
        total_move = sum(np.linalg.norm(np.array(trace[i]) - np.array(trace[i-1])) for i in range(1, len(trace)))

        # Feature for the model
        feature = [w, h, centroid[0], centroid[1], area, speed, direction_changes]
        label = 1  # Default label: Normal

        # Simple automatic labeling based on speed and direction changes:
        if speed > 100 or direction_changes > 4:
            label = 2  # Suspicious

        features_set.append(feature)
        labels_set.append(label)

        # Store features and predictions in long-term memory
        long_term_memory[matched_id].append({
            'features': feature,
            'prediction': label
        })

        # Retrain the model every 5 seconds
        if time.time() - start_time > training_interval:
            if len(features_set) > 10:
                knn.fit(features_set, labels_set)  # Train the model
                is_trained = True  # Model is trained
                print("Model updated.")
                start_time = time.time()  # Reset the timer after retraining

        # Prediction only after training
        if is_trained:
            predicted = knn.predict([feature])[0]

        # Draw information on the frame
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0) if label == 1 else (0, 0, 255), 2)
        cv2.circle(frame, centroid, 4, (255, 255, 255), -1)
        cv2.putText(frame, f"ID: {matched_id} | Direction: {direction} | Speed: {int(speed)}", (x, y - 25),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)
        cv2.putText(frame, f"Behavior: {'Normal' if predicted == 1 else 'Suspicious'}", (x, y - 5),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1)

        # Check if the object is old and mark it
        if is_old_object(matched_id):
            cv2.putText(frame, f"Old Object", (x, y - 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)

    # Remove old object IDs from memory
    for oid in list(object_last_seen):
        if time.time() - object_last_seen[oid] > 2:
            object_traces.pop(oid, None)
            object_last_seen.pop(oid, None)
            long_term_memory.pop(oid, None)  # Remove from long-term memory as well

    cv2.imshow("Behavioral Intelligence", frame)
    if cv2.waitKey(1) & 0xFF == 27:
        break

cap.release()
cv2.destroyAllWindows()