File size: 5,305 Bytes
1be8a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import cv2
import numpy as np
import time
from sklearn.neighbors import KNeighborsClassifier
from collections import defaultdict, deque

# Create background subtractor for motion detection
back_sub = cv2.createBackgroundSubtractorKNN(history=500, dist2Threshold=400, detectShadows=True)
cap = cv2.VideoCapture(0)

# Store object traces
object_traces = defaultdict(lambda: deque(maxlen=30))  # Last 30 points of each object
object_last_seen = {}
object_id_counter = 0

# For real-time learning
knn = KNeighborsClassifier(n_neighbors=3)
features_set = []
labels_set = []
frame_count = 0
learning_interval = 30

# Timer for data collection
start_time = time.time()
learning_time_limit = 60  # 1 minute for data collection

# Variable to avoid predicting before training
is_trained = False

def apply_noise_reduction(mask):
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
    mask = cv2.dilate(mask, kernel, iterations=1)
    return mask

def get_centroid(x, y, w, h):
    return (int(x + w / 2), int(y + h / 2))

def calculate_direction(trace):
    if len(trace) < 2:
        return "-"
    dx = trace[-1][0] - trace[0][0]
    dy = trace[-1][1] - trace[0][1]
    if abs(dx) > abs(dy):
        return "Left" if dx < 0 else "Right"
    else:
        return "Up" if dy < 0 else "Down"

def calculate_speed(trace, duration):
    if len(trace) < 2 or duration == 0:
        return 0
    dist = np.linalg.norm(np.array(trace[-1]) - np.array(trace[0]))
    return dist / duration

def count_direction_changes(trace):
    changes = 0
    for i in range(2, len(trace)):
        dx1 = trace[i-1][0] - trace[i-2][0]
        dx2 = trace[i][0] - trace[i-1][0]
        if dx1 * dx2 < 0:  # Horizontal direction change
            changes += 1
    return changes

while True:
    ret, frame = cap.read()
    if not ret:
        break

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    fg_mask = back_sub.apply(frame)
    fg_mask = apply_noise_reduction(fg_mask)

    contours, _ = cv2.findContours(fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    current_ids = []
    predicted = 1  # Default prediction value (if no prediction is made)
    for cnt in contours:
        area = cv2.contourArea(cnt)
        if area < 150:
            continue

        x, y, w, h = cv2.boundingRect(cnt)
        centroid = get_centroid(x, y, w, h)

        # Identify or create a new ID for the object
        matched_id = None
        for oid, trace in object_traces.items():
            if np.linalg.norm(np.array(trace[-1]) - np.array(centroid)) < 50:
                matched_id = oid
                break

        if matched_id is None:
            matched_id = object_id_counter
            object_id_counter += 1

        object_traces[matched_id].append(centroid)
        object_last_seen[matched_id] = time.time()
        current_ids.append(matched_id)

        trace = object_traces[matched_id]
        duration = time.time() - object_last_seen[matched_id] + 0.001
        speed = calculate_speed(trace, duration)
        direction = calculate_direction(trace)
        direction_changes = count_direction_changes(trace)
        total_move = sum(np.linalg.norm(np.array(trace[i]) - np.array(trace[i-1])) for i in range(1, len(trace)))

        # Feature for the model
        feature = [w, h, centroid[0], centroid[1], area, speed, direction_changes]
        label = 1  # Default label: Normal

        # Simple automatic labeling:
        if speed > 100 or direction_changes > 4:
            label = 2  # Suspicious

        features_set.append(feature)
        labels_set.append(label)

        # Train the model only after enough data is collected
        if time.time() - start_time < learning_time_limit:
            # Still in data collection phase
            continue
        elif not is_trained:  # If the model hasn't been trained yet
            if len(features_set) > 10:
                knn.fit(features_set, labels_set)  # Train the model
                is_trained = True  # Model is trained
                print("Model updated.")

        # Prediction only after training
        if is_trained:
            predicted = knn.predict([feature])[0]

        # Draw information on the frame
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0) if label == 1 else (0, 0, 255), 2)
        cv2.circle(frame, centroid, 4, (255, 255, 255), -1)
        cv2.putText(frame, f"ID: {matched_id} | Direction: {direction} | Speed: {int(speed)}", (x, y - 25),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)
        cv2.putText(frame, f"Behavior: {'Normal' if predicted == 1 else 'Suspicious'}", (x, y - 5),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1)

    frame_count += 1

    # Remove old object IDs
    for oid in list(object_last_seen):
        if time.time() - object_last_seen[oid] > 2:
            object_traces.pop(oid, None)
            object_last_seen.pop(oid, None)

    cv2.imshow("Behavioral Intelligence", frame)
    if cv2.waitKey(1) & 0xFF == 27:
        break

cap.release()
cv2.destroyAllWindows()