File size: 12,521 Bytes
1be8a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "ebc05db3-a28f-4f6c-8ebc-649d9b3012ca",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1b61a5c74bbf4d45b2b1c469682586e5",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer_config.json:   0%|          | 0.00/50.8k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "dd9d2a48c24546d59e49ea586ffc47e9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer.json:   0%|          | 0.00/9.09M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "70e69a427f724affb5eab8ccf71a9f6c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "special_tokens_map.json:   0%|          | 0.00/73.0 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c34b9f14434942229268d03748061964",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "config.json:   0%|          | 0.00/844 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "ValueError",
     "evalue": "The repository for microsoft/bitnet-b1.58-2B-4T contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/microsoft/bitnet-b1.58-2B-4T.\nPlease pass the argument `trust_remote_code=True` to allow custom code to be run.",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
      "File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\transformers\\dynamic_module_utils.py:666\u001b[0m, in \u001b[0;36mresolve_trust_remote_code\u001b[1;34m(trust_remote_code, model_name, has_local_code, has_remote_code)\u001b[0m\n\u001b[0;32m    665\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 666\u001b[0m     prev_sig_handler \u001b[38;5;241m=\u001b[39m signal\u001b[38;5;241m.\u001b[39msignal(signal\u001b[38;5;241m.\u001b[39mSIGALRM, _raise_timeout_error)\n\u001b[0;32m    667\u001b[0m     signal\u001b[38;5;241m.\u001b[39malarm(TIME_OUT_REMOTE_CODE)\n",
      "\u001b[1;31mAttributeError\u001b[0m: module 'signal' has no attribute 'SIGALRM'",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[1], line 8\u001b[0m\n\u001b[0;32m      6\u001b[0m \u001b[38;5;66;03m# Load tokenizer and model\u001b[39;00m\n\u001b[0;32m      7\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m AutoTokenizer\u001b[38;5;241m.\u001b[39mfrom_pretrained(model_id)\n\u001b[1;32m----> 8\u001b[0m model \u001b[38;5;241m=\u001b[39m AutoModelForCausalLM\u001b[38;5;241m.\u001b[39mfrom_pretrained(\n\u001b[0;32m      9\u001b[0m     model_id,\n\u001b[0;32m     10\u001b[0m     torch_dtype\u001b[38;5;241m=\u001b[39mtorch\u001b[38;5;241m.\u001b[39mbfloat16\n\u001b[0;32m     11\u001b[0m )\n\u001b[0;32m     13\u001b[0m \u001b[38;5;66;03m# Apply the chat template\u001b[39;00m\n\u001b[0;32m     14\u001b[0m messages \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m     15\u001b[0m     {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrole\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msystem\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou are a helpful AI assistant.\u001b[39m\u001b[38;5;124m\"\u001b[39m},\n\u001b[0;32m     16\u001b[0m     {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrole\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124muser\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHow are you?\u001b[39m\u001b[38;5;124m\"\u001b[39m},\n\u001b[0;32m     17\u001b[0m ]\n",
      "File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\transformers\\models\\auto\\auto_factory.py:531\u001b[0m, in \u001b[0;36m_BaseAutoModelClass.from_pretrained\u001b[1;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[0;32m    528\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquantization_config\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m    529\u001b[0m     _ \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquantization_config\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m--> 531\u001b[0m config, kwargs \u001b[38;5;241m=\u001b[39m AutoConfig\u001b[38;5;241m.\u001b[39mfrom_pretrained(\n\u001b[0;32m    532\u001b[0m     pretrained_model_name_or_path,\n\u001b[0;32m    533\u001b[0m     return_unused_kwargs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[0;32m    534\u001b[0m     trust_remote_code\u001b[38;5;241m=\u001b[39mtrust_remote_code,\n\u001b[0;32m    535\u001b[0m     code_revision\u001b[38;5;241m=\u001b[39mcode_revision,\n\u001b[0;32m    536\u001b[0m     _commit_hash\u001b[38;5;241m=\u001b[39mcommit_hash,\n\u001b[0;32m    537\u001b[0m     \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mhub_kwargs,\n\u001b[0;32m    538\u001b[0m     \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m    539\u001b[0m )\n\u001b[0;32m    541\u001b[0m \u001b[38;5;66;03m# if torch_dtype=auto was passed here, ensure to pass it on\u001b[39;00m\n\u001b[0;32m    542\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs_orig\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtorch_dtype\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
      "File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\transformers\\models\\auto\\configuration_auto.py:1117\u001b[0m, in \u001b[0;36mAutoConfig.from_pretrained\u001b[1;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[0;32m   1115\u001b[0m has_remote_code \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto_map\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m config_dict \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAutoConfig\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m config_dict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto_map\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m   1116\u001b[0m has_local_code \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel_type\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m config_dict \u001b[38;5;129;01mand\u001b[39;00m config_dict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel_type\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;129;01min\u001b[39;00m CONFIG_MAPPING\n\u001b[1;32m-> 1117\u001b[0m trust_remote_code \u001b[38;5;241m=\u001b[39m resolve_trust_remote_code(\n\u001b[0;32m   1118\u001b[0m     trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code\n\u001b[0;32m   1119\u001b[0m )\n\u001b[0;32m   1121\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_remote_code \u001b[38;5;129;01mand\u001b[39;00m trust_remote_code:\n\u001b[0;32m   1122\u001b[0m     class_ref \u001b[38;5;241m=\u001b[39m config_dict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto_map\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAutoConfig\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n",
      "File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\transformers\\dynamic_module_utils.py:682\u001b[0m, in \u001b[0;36mresolve_trust_remote_code\u001b[1;34m(trust_remote_code, model_name, has_local_code, has_remote_code)\u001b[0m\n\u001b[0;32m    679\u001b[0m     signal\u001b[38;5;241m.\u001b[39malarm(\u001b[38;5;241m0\u001b[39m)\n\u001b[0;32m    680\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[0;32m    681\u001b[0m     \u001b[38;5;66;03m# OS which does not support signal.SIGALRM\u001b[39;00m\n\u001b[1;32m--> 682\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m    683\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe repository for \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmodel_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m contains custom code which must be executed to correctly \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    684\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mload the model. You can inspect the repository content at https://hf.co/\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmodel_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    685\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease pass the argument `trust_remote_code=True` to allow custom code to be run.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    686\u001b[0m     )\n\u001b[0;32m    687\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m    688\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m prev_sig_handler \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
      "\u001b[1;31mValueError\u001b[0m: The repository for microsoft/bitnet-b1.58-2B-4T contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/microsoft/bitnet-b1.58-2B-4T.\nPlease pass the argument `trust_remote_code=True` to allow custom code to be run."
     ]
    }
   ],
   "source": [
    "import torch\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer\n",
    "\n",
    "model_id = \"microsoft/bitnet-b1.58-2B-4T\"\n",
    "\n",
    "# Load tokenizer and model\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
    "model = AutoModelForCausalLM.from_pretrained(\n",
    "    model_id,\n",
    "    torch_dtype=torch.bfloat16\n",
    ")\n",
    "\n",
    "# Apply the chat template\n",
    "messages = [\n",
    "    {\"role\": \"system\", \"content\": \"You are a helpful AI assistant.\"},\n",
    "    {\"role\": \"user\", \"content\": \"How are you?\"},\n",
    "]\n",
    "prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
    "chat_input = tokenizer(prompt, return_tensors=\"pt\").to(model.device)\n",
    "\n",
    "# Generate response\n",
    "chat_outputs = model.generate(**chat_input, max_new_tokens=50)\n",
    "response = tokenizer.decode(chat_outputs[0][chat_input['input_ids'].shape[-1]:], skip_special_tokens=True) # Decode only the response part\n",
    "print(\"\\nAssistant Response:\", response)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2b6c0add-3a67-47df-be9d-ed78bbd08a16",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [conda env:base] *",
   "language": "python",
   "name": "conda-base-py"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}