File size: 10,229 Bytes
9905550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from mpl_toolkits.mplot3d import Axes3D, art3d
import random
# Parameters
WORLD_SIZE = 100000
AIRCRAFT_COUNT = 100
RADAR_RANGE = 70000
RADAR_ALTITUDE_LIMIT = 20000 # max altitude radar covers in meters
SCAN_SPEED = 2.0 # degrees per frame
BEAM_WIDTH = 5.0 # degrees width of radar beam
TRACK_LENGTH = 20 # length of tail/track for aircrafts
MAX_ACCELERATION = 5 # m/s^2 max change in velocity per frame
# Aircraft types with properties
AIRCRAFT_TYPES = {
'commercial': {'rcs_range': (10, 20), 'color': 'cyan', 'size': 30},
'military': {'rcs_range': (5, 12), 'color': 'red', 'size': 40},
'drone': {'rcs_range': (1, 4), 'color': 'yellow', 'size': 20},
'unknown': {'rcs_range': (0.5, 2), 'color': 'magenta', 'size': 25}
}
# Event Class with motion
class MovingEvent3D:
def __init__(self, evt_type, center, radius, altitude, velocity):
self.type = evt_type
self.center = np.array(center, dtype=float)
self.radius = radius
self.altitude = altitude
self.velocity = np.array(velocity, dtype=float)
self.active = True
def update(self):
self.center += self.velocity
# Bounce inside world bounds for x,y
for i in [0, 1]:
if self.center[i] < 0 or self.center[i] > WORLD_SIZE:
self.velocity[i] = -self.velocity[i]
self.center[i] = np.clip(self.center[i], 0, WORLD_SIZE)
# Bounce altitude inside radar altitude limit
if self.altitude < 0 or self.altitude > RADAR_ALTITUDE_LIMIT:
self.velocity[2] = -self.velocity[2]
self.altitude = np.clip(self.altitude, 0, RADAR_ALTITUDE_LIMIT)
# Random on/off toggle for event activity
if random.random() < 0.001:
self.active = not self.active
def generate_moving_events_3d():
events = []
for _ in range(4):
evt_type = random.choice(['storm', 'no-fly-zone', 'jamming', 'interference'])
center = np.random.uniform(0, WORLD_SIZE, 2)
altitude = np.random.uniform(0, RADAR_ALTITUDE_LIMIT)
radius = {'storm': 15000, 'no-fly-zone': 10000, 'jamming': 8000, 'interference':12000}[evt_type]
velocity = np.random.uniform(-50, 50, 3)
events.append(MovingEvent3D(evt_type, center, radius, altitude, velocity))
return events
world_events = generate_moving_events_3d()
# Generate aircrafts with altitude, track history, type and variable velocity
def generate_aircraft_3d():
aircrafts = []
for i in range(AIRCRAFT_COUNT):
ac_type = random.choices(list(AIRCRAFT_TYPES.keys()), weights=[0.5,0.3,0.15,0.05])[0]
rcs_min, rcs_max = AIRCRAFT_TYPES[ac_type]['rcs_range']
ac = {
'id': i,
'type': ac_type,
'position': np.array([*np.random.uniform(0, WORLD_SIZE, 2), np.random.uniform(0, RADAR_ALTITUDE_LIMIT)]),
'velocity': np.random.uniform(-50, 50, 3),
'rcs': random.uniform(rcs_min, rcs_max),
'callsign': f"{ac_type[:2].upper()}{i:03}",
'emergency': random.random() < 0.03,
'track': [],
'acceleration': np.zeros(3),
}
aircrafts.append(ac)
return aircrafts
aircrafts = generate_aircraft_3d()
radar_angle = [0]
radar_pos = np.array([WORLD_SIZE/2, WORLD_SIZE/2, 0])
paused = [False]
def is_event_active_3d(pos):
for evt in world_events:
if evt.active:
d_xy = np.linalg.norm(pos[:2] - evt.center)
dz = abs(pos[2] - evt.altitude)
if d_xy < evt.radius and dz < evt.radius / 2:
return evt.type
return None
def detect_3d(ac, radar_pos):
delta = ac['position'] - radar_pos
rng = np.linalg.norm(delta)
if rng > RADAR_RANGE or ac['position'][2] > RADAR_ALTITUDE_LIMIT:
return False
bearing = (np.degrees(np.arctan2(delta[1], delta[0])) + 360) % 360
diff = abs((bearing - radar_angle[0] + 180) % 360 - 180)
if diff > BEAM_WIDTH / 2:
return False
evt = is_event_active_3d(ac['position'])
snr_val = 20 - 20*np.log10(rng + 1) + ac['rcs']
if evt == 'jamming':
snr_val -= 50
elif evt == 'storm':
snr_val -= 15
elif evt == 'interference':
snr_val -= 25
prob = 1 / (1 + np.exp(-(snr_val - 10)))
# Introduce random detection noise
noise = np.random.normal(0, 0.1)
return np.random.rand() < (prob + noise)
# Setup plot
fig = plt.figure(figsize=(14, 10))
ax = fig.add_subplot(111, projection='3d')
ax.set_xlim(0, WORLD_SIZE)
ax.set_ylim(0, WORLD_SIZE)
ax.set_zlim(0, RADAR_ALTITUDE_LIMIT)
ax.set_facecolor('black')
# Scatter for different types of aircrafts (dynamic update)
all_scatter = ax.scatter([], [], [], c=[], s=[], label='Aircraft')
detected_scatter = ax.scatter([], [], [], c='lime', s=60, label='Detected')
emergency_scatter = ax.scatter([], [], [], c='orange', s=80, marker='^', label='Emergency')
radar_sweep_line, = ax.plot([], [], [], c='cyan', linewidth=3, label='Radar Sweep')
# Track lines for aircrafts
track_lines = [ax.plot([], [], [], c='white', alpha=0.3, linewidth=1)[0] for _ in range(AIRCRAFT_COUNT)]
event_spheres = []
event_colors = {'storm':'blue', 'no-fly-zone':'yellow', 'jamming':'magenta', 'interference':'purple'}
def plot_sphere(center, radius, color):
u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(0, np.pi, 20)
x = center[0] + radius * np.outer(np.cos(u), np.sin(v))
y = center[1] + radius * np.outer(np.sin(u), np.sin(v))
z = center[2] + radius * np.outer(np.ones(np.size(u)), np.cos(v))
return ax.plot_surface(x, y, z, color=color, alpha=0.15)
for evt in world_events:
sphere = plot_sphere(np.array([*evt.center, evt.altitude]), evt.radius, event_colors[evt.type])
event_spheres.append(sphere)
# Radar range circle on ground
radar_circle = plt.Circle((radar_pos[0], radar_pos[1]), RADAR_RANGE, color='cyan', alpha=0.1)
ax.add_patch(radar_circle)
art3d.pathpatch_2d_to_3d(radar_circle, z=0, zdir="z")
def update(frame):
if paused[0]:
return
# بهروزرسانی زاویه رادار
radar_angle[0] = (radar_angle[0] + 1) % 360
all_pos = []
all_colors = []
all_sizes = []
detected_pos = []
emergency_pos = []
for ac in aircrafts:
# محدود کردن سرعت
v_mag = np.linalg.norm(ac['velocity'])
max_speed = 250 # m/s
if v_mag > max_speed:
ac['velocity'] = (ac['velocity'] / v_mag) * max_speed
# بهروزرسانی موقعیت
ac['position'] += ac['velocity']
# برخورد به دیوارههای جهان
for i in [0, 1]:
if ac['position'][i] < 0 or ac['position'][i] > WORLD_SIZE:
ac['velocity'][i] = -ac['velocity'][i]
ac['position'][i] = np.clip(ac['position'][i], 0, WORLD_SIZE)
if ac['position'][2] < 0 or ac['position'][2] > RADAR_ALTITUDE_LIMIT:
ac['velocity'][2] = -ac['velocity'][2]
ac['position'][2] = np.clip(ac['position'][2], 0, RADAR_ALTITUDE_LIMIT)
# ثبت رد حرکت
ac['track'].append(ac['position'].copy())
if len(ac['track']) > TRACK_LENGTH:
ac['track'].pop(0)
all_pos.append(ac['position'])
all_colors.append(AIRCRAFT_TYPES[ac['type']]['color'])
all_sizes.append(AIRCRAFT_TYPES[ac['type']]['size'])
if detect_3d(ac, radar_pos):
detected_pos.append(ac['position'])
if ac['emergency']:
emergency_pos.append(ac['position'])
# تبدیل به np.array
all_pos = np.array(all_pos)
detected_pos = np.array(detected_pos)
emergency_pos = np.array(emergency_pos)
# آپدیت scatter کل هواپیماها
if len(all_pos) > 0:
all_scatter._offsets3d = (all_pos[:,0], all_pos[:,1], all_pos[:,2])
all_scatter.set_color(all_colors)
all_scatter.set_sizes(all_sizes)
else:
all_scatter._offsets3d = ([], [], [])
all_scatter.set_color([])
all_scatter.set_sizes([])
# آپدیت scatter هواپیماهای تشخیص داده شده
if len(detected_pos) > 0:
detected_scatter._offsets3d = (detected_pos[:,0], detected_pos[:,1], detected_pos[:,2])
detected_scatter.set_sizes([60]*len(detected_pos))
else:
detected_scatter._offsets3d = ([], [], [])
detected_scatter.set_sizes([])
# آپدیت scatter هواپیماهای اضطراری
if len(emergency_pos) > 0:
emergency_scatter._offsets3d = (emergency_pos[:,0], emergency_pos[:,1], emergency_pos[:,2])
emergency_scatter.set_sizes([80]*len(emergency_pos))
else:
emergency_scatter._offsets3d = ([], [], [])
emergency_scatter.set_sizes([])
# بهروزرسانی خطوط رد حرکت
for i, ac in enumerate(aircrafts):
if len(ac['track']) >= 2:
track_arr = np.array(ac['track'])
track_lines[i].set_data(track_arr[:,0], track_arr[:,1])
track_lines[i].set_3d_properties(track_arr[:,2])
else:
track_lines[i].set_data([], [])
track_lines[i].set_3d_properties([])
# بهروزرسانی خط اسکن رادار
angle_rad = np.radians(radar_angle[0])
x = [radar_pos[0], radar_pos[0] + RADAR_RANGE * np.cos(angle_rad)]
y = [radar_pos[1], radar_pos[1] + RADAR_RANGE * np.sin(angle_rad)]
z = [0, 0]
radar_sweep_line.set_data(x, y)
radar_sweep_line.set_3d_properties(z)
ax.set_title(f"3D Radar Simulation - Scan Angle: {radar_angle[0]:.1f}°")
def on_key(event):
if event.key == ' ':
paused[0] = not paused[0]
fig.canvas.mpl_connect('key_press_event', on_key)
ani = FuncAnimation(fig, update, interval=50)
plt.legend(loc='upper right')
plt.show()
|