Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,961 Bytes
a8eb016
 
 
7052635
a8eb016
 
7655679
a8eb016
5bc562a
a8eb016
7655679
7052635
a8eb016
 
7655679
a8eb016
5bc562a
a8eb016
7655679
7052635
 
 
 
 
 
a8eb016
7655679
 
2ad544b
 
c419a73
2ad544b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
configs:
  - config_name: meeting-qa
    data_files:
      - split: train
        path: meeting/train.jsonl
      - split: validation
        path: meeting/dev.jsonl
      - split: test
        path: meeting/test.jsonl
  - config_name: story-qa
    data_files:
      - split: train
        path: story/train.jsonl
      - split: validation
        path: story/dev.jsonl
      - split: test
        path: story/test.jsonl
  - config_name: meeting-corpus
    data_files:
      - split: corpus
        path: meeting/corpus.jsonl
  - config_name: story-corpus
    data_files:
      - split: corpus
        path: story/corpus.jsonl
---
# MSRS: Evaluating Multi-Source Retrieval-Augmented Generation

**[📄 Paper](https://arxiv.org/abs/2508.20867) | [💻 Code](https://github.com/yale-nlp/MSRS)**

This paper introduces a scalable framework for constructing evaluation benchmarks that challenge RAG systems to integrate information across distinct sources and generate long-form responses. Using our framework, we build two new benchmarks on Multi-Source Retrieval and Synthesis: MSRS-Story and MSRS-Meet.

## 🚀 Quickstart

Load the corpora for MSRS-Story and MSRS-Meet:
```py
from datasets import load_dataset

story_corpus = load_dataset("yale-nlp/MSRS", "story-corpus", split="corpus")
meeting_corpus = load_dataset("yale-nlp/MSRS", "meeting-corpus", split="corpus")
```

Corpus Dataset Example:

```js
{
    "id": // Unique ID for the document
    "text": // Document text
}
```

Load the query-answer pairs for MSRS-Story and MSRS-Meet (available splits: `train`, `test`, and `validation`):

```py
from datasets import load_dataset

story_qa = load_dataset("yale-nlp/MSRS", "story-qa")
meeting_qa = load_dataset("yale-nlp/MSRS", "meeting-qa")
```

QA Dataset Example:

```js
{
    "id": // Unique ID for the query
    "query": // Query text
    "gold_documents": // List of gold document IDs
    "answer": // List of answer summaries
}
```