File size: 4,025 Bytes
217d1a3
 
 
 
 
 
 
 
 
 
 
 
 
bf351a1
217d1a3
 
bf351a1
217d1a3
 
 
 
 
 
 
 
 
889c542
217d1a3
 
 
889c542
217d1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf351a1
 
 
217d1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf351a1
217d1a3
bf351a1
217d1a3
 
 
 
bf351a1
 
 
889c542
fd1d016
bf351a1
217d1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
language:
- bn
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
tags:
- women-safety
- gender-bias
- social-media
- Bangla-NLP
- sentiment-analysis
pretty_name: >-
  Bengali Gender Bias Dataset (Partial): A Balanced Corpus for Analysis and Mitigation
---

# Bengali Gender Bias Dataset: A Balanced Corpus for Analysis and Mitigation

## Dataset Details

### Overview
A manually annotated corpus of Bangla designed to benchmark and mitigate gender bias specifically targeting women. The dataset supports research in ethical NLP, hate speech detection, and computational social science.

## Dataset Description

### Basic Info
- **Purpose**: Detect gender bias against women in Bengali text
- **Language**: Bengali (Bangla)
- **Labels**:
  - `0`: Neutral (no bias)
  - `1`: Positive (supportive towards women in general)
  - `2`: Negative (contains bias against women)

### Data Sources
Collected from:
- Social media (TikTok, Facebook, Twitter, Instagram)
- Online forums
- News articles and comments
- Government reports

### Collection Methods
- Semi-automated tools with ethical safeguards:
  - Only public content collected
  - All personal info removed
  - Rate-limited scraping

### Partnerships
Developed with help from:
- Various social media platforms
- Community organizations
- Local annotation teams

### **Dataset Structure**
- **Format**: CSV
- **Columns**:
  - `Data`: Raw Bangla text.
  - `Label`: Integer (0, 1, or 2).

## Statistics
- **Total Samples**: 11,178  
- **Label Distribution**:  
  - `Neutral (0)`: 3,644 samples (32.6%)  
  - `Positive (1)`: 3,506 samples (31.4%)  
  - `Negative (2)`: 4,028 samples (36.0%)  

## Ethical Considerations

### Data Collection
- **Anonymization**:  
  - All user identifiers (usernames, URLs, locations) removed  
  - Metadata sanitized to prevent re-identification  
- **Consent**:  
  - For survey/interview data: Explicit participant consent obtained  
  - Public posts used under platform terms of service  

### Content Safeguards
- **Mental Health Protections**:  
  - Annotators provided with:  
    - Psychological support resources  
    - Regular breaks when handling toxic content   
- **Trigger Warnings**:  
  - Dataset documentation highlights potentially harmful content  

## Limitations

- **Scope Limitations**:
  - Focuses only on gender bias against women
  - Doesn't cover third gender or intersectional biases

- **Detection Challenges**:
  - Difficulty identifying implicit bias and contextual nuances
  - Performance varies across regional dialects

- **Language Coverage**:
  - Currently Bengali-only (may not generalize to other South Asian languages)

## Usage

### **How to Load**
```python
# Note: The dataset will be made publicly available after publication
from datasets import load_dataset
dataset = load_dataset("anonymous/bengali-gender-bias-dataset")
```

## Citation
```bibtex
@dataset{bengaligenderbiaspartial,
  title = {{Bengali Gender Bias Dataset (Partial)}: A Balanced Corpus for Analysis and Mitigation},
  author = {Anonymous},
  year = {2025},
  publisher = {Hugging Face},
  note = {Under review},
  license = {CC-BY-NC-SA-4.0},
}
```

## License
[![CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC_BY--NC--SA_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).

### You are free to:
- **Share** — copy and redistribute the material in any medium or format
- **Adapt** — remix, transform, and build upon the material

### Under the following terms:
- **Attribution** — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- **NonCommercial** — You may not use the material for commercial purposes.
- **ShareAlike** — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.