Datasets:
Upload QuestionAndAnswerExtraction.ipynb
Browse filesAdd jupyter script used to create first version of dataset.
QuestionAndAnswerExtraction.ipynb
ADDED
|
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "f31245e6",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"### Download entries from DIP-Bundestag and put them in a csv to further process them.\n",
|
| 9 |
+
"\n",
|
| 10 |
+
"See https://search.dip.bundestag.de/api/v1/swagger-ui/ for the API reference. We only request documents of the type antwort and based on the start and end date provided."
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": null,
|
| 16 |
+
"id": "8af55e90",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import requests\n",
|
| 21 |
+
"from pprint import pprint\n",
|
| 22 |
+
"import pandas as pd\n",
|
| 23 |
+
"from pathlib import Path\n",
|
| 24 |
+
"from pprint import pprint\n",
|
| 25 |
+
"from tqdm import tqdm\n",
|
| 26 |
+
"from concurrent.futures import ThreadPoolExecutor\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"DIP_URL = \"https://search.dip.bundestag.de/api/v1/drucksache\"\n",
|
| 29 |
+
"DIP_TOKEN = \"rgsaY4U.oZRQKUHdJhF9qguHMkwCGIoLaqEcaHjYLF\"\n",
|
| 30 |
+
"\n",
|
| 31 |
+
"START_DATE = \"2015-05-07\"\n",
|
| 32 |
+
"END_DATE = \"2023-07-09\"\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"REQUEST_URL = f\"{DIP_URL}?f.drucksachetyp=Antwort&f.datum.start={START_DATE}&f.datum.end={END_DATE}&format=json&apikey={DIP_TOKEN}\"\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"df = pd.DataFrame()\n",
|
| 37 |
+
"docs = []\n",
|
| 38 |
+
"res = requests.get(REQUEST_URL)\n",
|
| 39 |
+
"r_json = res.json()\n",
|
| 40 |
+
"old_cursor = r_json[\"cursor\"]\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"with ThreadPoolExecutor(max_workers=10) as pool:\n",
|
| 43 |
+
" count = 0\n",
|
| 44 |
+
" while True:\n",
|
| 45 |
+
" for doc in tqdm(r_json[\"documents\"]):\n",
|
| 46 |
+
" docs.append(doc)\n",
|
| 47 |
+
" doc_id = doc[\"id\"]\n",
|
| 48 |
+
" doc_number = doc[\"fundstelle\"][\"dokumentnummer\"]\n",
|
| 49 |
+
" url = doc[\"fundstelle\"][\"pdf_url\"] \n",
|
| 50 |
+
" count += 1\n",
|
| 51 |
+
" res = requests.get(f\"{REQUEST_URL}&cursor={old_cursor}\")\n",
|
| 52 |
+
" r_json = res.json()\n",
|
| 53 |
+
" new_cursor = r_json[\"cursor\"]\n",
|
| 54 |
+
" if new_cursor == old_cursor:\n",
|
| 55 |
+
" print(\"Found same cursor. No new results.\")\n",
|
| 56 |
+
" break\n",
|
| 57 |
+
" old_cursor = new_cursor\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"df = df.from_records(docs)\n",
|
| 61 |
+
"print(f\"Extracted {len(df)} entries.\")\n",
|
| 62 |
+
"df.to_csv(\"raw_entries.csv\")"
|
| 63 |
+
]
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"cell_type": "markdown",
|
| 67 |
+
"id": "58b0055f",
|
| 68 |
+
"metadata": {},
|
| 69 |
+
"source": [
|
| 70 |
+
"### Read back csv written in previous step, and download the associated PDF with each entry"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": null,
|
| 76 |
+
"id": "1bf8044e",
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"outputs": [],
|
| 79 |
+
"source": [
|
| 80 |
+
"\n",
|
| 81 |
+
"df = pd.read_csv(\"raw_entries.csv\")\n",
|
| 82 |
+
"\n",
|
| 83 |
+
"def download_file(download_path:Path,doc_id:str,url:str) -> None:\n",
|
| 84 |
+
" r = requests.get(url, allow_redirects=True)\n",
|
| 85 |
+
" if r.status_code != 200:\n",
|
| 86 |
+
" print(f\"Got status {r.status_code} for url {doc_id} and {url}\")\n",
|
| 87 |
+
" return False\n",
|
| 88 |
+
" with open(download_path / f\"{doc_id}.pdf\", 'wb') as f:\n",
|
| 89 |
+
" f.write(r.content)\n",
|
| 90 |
+
" \n",
|
| 91 |
+
" return True\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"download_path = Path(\"./downloads2/\")\n",
|
| 94 |
+
"download_path.mkdir(exist_ok=True)\n",
|
| 95 |
+
"\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"for i,row in df.iterrows():\n",
|
| 98 |
+
" pdf_url = eval(row[\"fundstelle\"])[\"pdf_url\"]\n",
|
| 99 |
+
" success = download_file(download_path,row[\"id\"],pdf_url)\n",
|
| 100 |
+
" df.at[i,\"download_success\"]=success\n",
|
| 101 |
+
"\n",
|
| 102 |
+
"df.to_csv(\"entries_with_download_status.csv\")"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "markdown",
|
| 107 |
+
"id": "15959ea4",
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"source": [
|
| 110 |
+
"\n",
|
| 111 |
+
"### Extract the text out of the downloaded pdfs"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "code",
|
| 116 |
+
"execution_count": null,
|
| 117 |
+
"id": "7417bc4e",
|
| 118 |
+
"metadata": {},
|
| 119 |
+
"outputs": [],
|
| 120 |
+
"source": [
|
| 121 |
+
"import pandas as pd\n",
|
| 122 |
+
"import sys\n",
|
| 123 |
+
"import pdftotext\n",
|
| 124 |
+
"import fitz\n",
|
| 125 |
+
"import re\n",
|
| 126 |
+
"from pathlib import Path\n",
|
| 127 |
+
"from dehyphen import FlairScorer\n",
|
| 128 |
+
"from dehyphen import format\n",
|
| 129 |
+
"from tqdm import tqdm\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"HEADER_HEIGHT = 78\n",
|
| 132 |
+
"FOOTER_HEIGHT = 70\n",
|
| 133 |
+
"\n",
|
| 134 |
+
"QUESTION_FONT_SIZE = 9.609999656677246\n",
|
| 135 |
+
"ANSWER_FONT_SIZE = 10.678000450134277\n",
|
| 136 |
+
"BULLET_POINT_ANSWER_SIZE = 6.0\n",
|
| 137 |
+
"\n",
|
| 138 |
+
"OUTPUT_PATH = 'raw_text_blocks.csv'\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"scorer = FlairScorer(lang=\"de\")\n",
|
| 141 |
+
"pattern = r'^\\s*\\d+\\.\\s*' # Matches a number followed by a dot and a space at the beginning of the string\n",
|
| 142 |
+
"\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"def process_text_block(block:dict = {},pdf_path:Path = None,remove_q_numbers: bool = False):\n",
|
| 145 |
+
" txt = []\n",
|
| 146 |
+
" font = None\n",
|
| 147 |
+
"\n",
|
| 148 |
+
" for line in block.get(\"lines\", []):\n",
|
| 149 |
+
" for span in line[\"spans\"]:\n",
|
| 150 |
+
" span_txt = span[\"text\"]\n",
|
| 151 |
+
" span_font = span[\"font\"]\n",
|
| 152 |
+
" span_font_size = span[\"size\"]\n",
|
| 153 |
+
" if span_txt==\"\" or span_txt.isspace():\n",
|
| 154 |
+
" #print(f\"Found empty string or only spaces in document {pdf_path}\")\n",
|
| 155 |
+
" continue\n",
|
| 156 |
+
" if font is None:\n",
|
| 157 |
+
" span_type = \"Unknown\"\n",
|
| 158 |
+
" if span_font_size == QUESTION_FONT_SIZE:\n",
|
| 159 |
+
" span_type = \"Question\"\n",
|
| 160 |
+
" if remove_q_numbers:\n",
|
| 161 |
+
" span_txt = re.sub(pattern,\"\",span_txt)\n",
|
| 162 |
+
" elif span_font_size in [BULLET_POINT_ANSWER_SIZE,ANSWER_FONT_SIZE]:\n",
|
| 163 |
+
" span_type = \"Answer\"\n",
|
| 164 |
+
" font = (span_font, span_font_size, span_type)\n",
|
| 165 |
+
" txt.append(span_txt)\n",
|
| 166 |
+
"\n",
|
| 167 |
+
" if len(txt) > 1:\n",
|
| 168 |
+
" txt_joined = \"\\n\".join(txt)\n",
|
| 169 |
+
" txt_formatted = format.text_to_format(txt_joined)\n",
|
| 170 |
+
" txt_dehyphenated = scorer.dehyphen(txt_formatted)\n",
|
| 171 |
+
" txt = format.format_to_text(txt_dehyphenated)\n",
|
| 172 |
+
" else:\n",
|
| 173 |
+
" if len(txt) == 0:\n",
|
| 174 |
+
" txt = \"\"\n",
|
| 175 |
+
" else:\n",
|
| 176 |
+
" txt = txt[0]\n",
|
| 177 |
+
" txt = txt.strip()\n",
|
| 178 |
+
" if font is not None:\n",
|
| 179 |
+
" result = {\"file\": pdf_path.name, \"txt\": txt, \"font\": font[0], \"size\": font[1], \"type\": font[2]}\n",
|
| 180 |
+
" else:\n",
|
| 181 |
+
" result = {\"file\": pdf_path.name, \"txt\": \"Error\", \"font\": \"Error\", \"size\":\"Error\", \"type\": \"Error\"}\n",
|
| 182 |
+
" return result\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"\n",
|
| 185 |
+
"processed = []\n",
|
| 186 |
+
"if Path(OUTPUT_PATH).exists():\n",
|
| 187 |
+
" df = pd.read_csv(OUTPUT_PATH,sep=\"|\")\n",
|
| 188 |
+
" processed = df[\"file\"].values\n",
|
| 189 |
+
"else:\n",
|
| 190 |
+
" df = pd.DataFrame()\n",
|
| 191 |
+
"\n",
|
| 192 |
+
"res = []\n",
|
| 193 |
+
"for pdf_path in tqdm(Path(\"./downloads2\").glob(\"*.pdf\"),desc=\"docs\"):\n",
|
| 194 |
+
"\n",
|
| 195 |
+
" if pdf_path.name in processed:\n",
|
| 196 |
+
" print(f\"Found pdf in df: {pdf_path}\")\n",
|
| 197 |
+
" continue\n",
|
| 198 |
+
"\n",
|
| 199 |
+
" doc = fitz.open(pdf_path) # open a document\n",
|
| 200 |
+
"\n",
|
| 201 |
+
" for i,page in enumerate(doc): # iterate the document pages\n",
|
| 202 |
+
" #page.draw_rect([0,HEADER_HEIGHT,page.rect.width,page.rect.height - FOOTER_HEIGHT])\n",
|
| 203 |
+
" res_raw = page.get_text(\"dict\",clip = [0,HEADER_HEIGHT,page.rect.width,page.rect.height - FOOTER_HEIGHT])\n",
|
| 204 |
+
" blocks = res_raw[\"blocks\"] # blocks on page\n",
|
| 205 |
+
"\n",
|
| 206 |
+
" for block in blocks:\n",
|
| 207 |
+
" try:\n",
|
| 208 |
+
" block_res = process_text_block(block,pdf_path)\n",
|
| 209 |
+
" if block_res[\"type\"] != \"Unknown\" and block_res[\"type\"] != \"Error\":\n",
|
| 210 |
+
" res.append(block_res)\n",
|
| 211 |
+
" except Exception as e:\n",
|
| 212 |
+
" print(str(e),block)\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"\n",
|
| 215 |
+
" #print(len(res))\n",
|
| 216 |
+
" if len(res) > 100:\n",
|
| 217 |
+
" df = pd.DataFrame.from_dict(res)\n",
|
| 218 |
+
"\n",
|
| 219 |
+
" df.to_csv(OUTPUT_PATH, mode='a', header=not Path(OUTPUT_PATH).exists(),index=False,sep=\"|\")\n",
|
| 220 |
+
" df = pd.DataFrame()\n",
|
| 221 |
+
" res = []\n"
|
| 222 |
+
]
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "markdown",
|
| 226 |
+
"id": "c9d709c4",
|
| 227 |
+
"metadata": {},
|
| 228 |
+
"source": [
|
| 229 |
+
"### Transform raw text into question / answer tuples"
|
| 230 |
+
]
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"cell_type": "code",
|
| 234 |
+
"execution_count": null,
|
| 235 |
+
"id": "98cb494b",
|
| 236 |
+
"metadata": {},
|
| 237 |
+
"outputs": [],
|
| 238 |
+
"source": [
|
| 239 |
+
"df_f = pd.read_csv(\"./raw_text_blocks.csv\",sep=\"|\")\n",
|
| 240 |
+
"print(len(df_f))\n",
|
| 241 |
+
"files = df_f.groupby('file')\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"pairs = []\n",
|
| 244 |
+
"for i,group in files:\n",
|
| 245 |
+
"\n",
|
| 246 |
+
" i = iter(group.groupby([(group.type != group.type.shift()).cumsum()]))\n",
|
| 247 |
+
"\n",
|
| 248 |
+
" try:\n",
|
| 249 |
+
" while True:\n",
|
| 250 |
+
" elem1 = next(i)\n",
|
| 251 |
+
" if set(elem1[1].type.values) != {\"Question\"}:\n",
|
| 252 |
+
" print(\"Broken\")\n",
|
| 253 |
+
" continue\n",
|
| 254 |
+
" elem2 = next(i)\n",
|
| 255 |
+
" if set(elem2[1].type.values) != {\"Answer\"}:\n",
|
| 256 |
+
" print(\"Broken\")\n",
|
| 257 |
+
" continue\n",
|
| 258 |
+
"\n",
|
| 259 |
+
" pair = {}\n",
|
| 260 |
+
" pair[\"question\"] = \"\\n\".join(list(elem1[1].txt.values))\n",
|
| 261 |
+
" pair[\"answer\"] = \"\\n\".join(list(elem2[1].txt.values))\n",
|
| 262 |
+
" pair[\"doc_id\"] = group.file.unique()[0].split(\".\")[0]\n",
|
| 263 |
+
" pairs.append(pair)\n",
|
| 264 |
+
" except StopIteration:\n",
|
| 265 |
+
" pass\n",
|
| 266 |
+
" \n",
|
| 267 |
+
"df_res = pd.DataFrame.from_records(pairs)\n",
|
| 268 |
+
"df_res.to_csv(\"final.csv\")"
|
| 269 |
+
]
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"cell_type": "code",
|
| 273 |
+
"execution_count": null,
|
| 274 |
+
"id": "9a816523",
|
| 275 |
+
"metadata": {},
|
| 276 |
+
"outputs": [],
|
| 277 |
+
"source": []
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "code",
|
| 281 |
+
"execution_count": null,
|
| 282 |
+
"id": "4a21ca40",
|
| 283 |
+
"metadata": {},
|
| 284 |
+
"outputs": [],
|
| 285 |
+
"source": []
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"cell_type": "code",
|
| 289 |
+
"execution_count": null,
|
| 290 |
+
"id": "1ca5572b",
|
| 291 |
+
"metadata": {},
|
| 292 |
+
"outputs": [],
|
| 293 |
+
"source": []
|
| 294 |
+
}
|
| 295 |
+
],
|
| 296 |
+
"metadata": {
|
| 297 |
+
"kernelspec": {
|
| 298 |
+
"display_name": "Python 3 (ipykernel)",
|
| 299 |
+
"language": "python",
|
| 300 |
+
"name": "python3"
|
| 301 |
+
},
|
| 302 |
+
"language_info": {
|
| 303 |
+
"codemirror_mode": {
|
| 304 |
+
"name": "ipython",
|
| 305 |
+
"version": 3
|
| 306 |
+
},
|
| 307 |
+
"file_extension": ".py",
|
| 308 |
+
"mimetype": "text/x-python",
|
| 309 |
+
"name": "python",
|
| 310 |
+
"nbconvert_exporter": "python",
|
| 311 |
+
"pygments_lexer": "ipython3",
|
| 312 |
+
"version": "3.10.6"
|
| 313 |
+
}
|
| 314 |
+
},
|
| 315 |
+
"nbformat": 4,
|
| 316 |
+
"nbformat_minor": 5
|
| 317 |
+
}
|