Datasets:

Modalities:
Audio
Text
Libraries:
Datasets
License:
File size: 5,039 Bytes
cbccc97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# coding=utf-8
# Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NINJAL Ainu folklore corpus"""

import os
import json

import datasets


_DESCRIPTION = ""
_CITATION = ""
_HOMEPAGE_URL = ""

_BASE_PATH = "data/"
_DATA_URL = _BASE_PATH + "audio/{split}.tar.gz"
_META_URL = _BASE_PATH + "{split}.json"


class AinuFolkloreConfig(datasets.BuilderConfig):
    def __init__(self, name, **kwargs):
        super().__init__(name=name, version=datasets.Version("0.0.0", ""), **kwargs)


class AinuFolklore(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [AinuFolkloreConfig("all")]

    def _info(self):
        task_templates = None
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "audio": datasets.features.Audio(sampling_rate=16_000),
                "transcription": datasets.Value("string"),
                "speaker": datasets.Value("string"),
                "surface": datasets.Value("string"),
                "underlying": datasets.Value("string"),
                "gloss": datasets.Value("string"),
                "translation": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=("audio", "transcription"),
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
            task_templates=task_templates,
        )

    def _split_generators(self, dl_manager):
        splits = ["train", "dev", "test"]

        data_urls = {split: [_DATA_URL.format(split=split)] for split in splits}
        meta_urls = {split: [_META_URL.format(split=split)] for split in splits}

        archive_paths = dl_manager.download(data_urls)
        local_extracted_archives = (
            dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
        )
        archive_iters = {
            split: [dl_manager.iter_archive(path) for path in paths]
            for split, paths in archive_paths.items()
        }

        meta_paths = dl_manager.download(meta_urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "local_extracted_archives": local_extracted_archives.get(
                        "train", [None] * len(meta_paths.get("train"))
                    ),
                    "archive_iters": archive_iters.get("train"),
                    "text_paths": meta_paths.get("train"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "local_extracted_archives": local_extracted_archives.get(
                        "dev", [None] * len(meta_paths.get("dev"))
                    ),
                    "archive_iters": archive_iters.get("dev"),
                    "text_paths": meta_paths.get("dev"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "local_extracted_archives": local_extracted_archives.get(
                        "test", [None] * len(meta_paths.get("test"))
                    ),
                    "archive_iters": archive_iters.get("test"),
                    "text_paths": meta_paths.get("test"),
                },
            ),
        ]

    def _generate_examples(self, local_extracted_archives, archive_iters, text_paths):
        assert len(local_extracted_archives) == len(archive_iters) == len(text_paths)
        key = 0

        for archive, text_path, local_extracted_path in zip(
            archive_iters, text_paths, local_extracted_archives
        ):
            with open(text_path, encoding="utf-8") as fin:
                data = json.load(fin)

            for audio_path, audio_file in archive:
                audio_filename = audio_path.split("/")[-1]
                if audio_filename not in data:
                    continue

                result = data[audio_filename]
                extracted_audio_path = (
                    os.path.join(local_extracted_path, audio_filename)
                    if local_extracted_path is not None
                    else None
                )
                result["audio"] = {"path": audio_path, "bytes": audio_file.read()}
                yield key, result
                key += 1