Commit
·
a875142
1
Parent(s):
0f7b9e2
Enhance dataset card creation with filtering statistics and add option to skip long prompts
Browse files- generate-responses.py +88 -11
generate-responses.py
CHANGED
@@ -87,8 +87,25 @@ def create_dataset_card(
|
|
87 |
tensor_parallel_size: int,
|
88 |
num_examples: int,
|
89 |
generation_time: str,
|
|
|
|
|
90 |
) -> str:
|
91 |
"""Create a comprehensive dataset card documenting the generation process."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
return f"""---
|
93 |
viewer: false
|
94 |
tags:
|
@@ -107,7 +124,7 @@ This dataset contains generated responses for prompts from [{source_dataset}](ht
|
|
107 |
- **Messages Column**: `{messages_column}`
|
108 |
- **Model**: [{model_id}](https://huggingface.co/{model_id})
|
109 |
- **Number of Examples**: {num_examples:,}
|
110 |
-
- **Generation Date**: {generation_time}
|
111 |
|
112 |
### Sampling Parameters
|
113 |
|
@@ -143,7 +160,7 @@ uv run https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-respons
|
|
143 |
--temperature {sampling_params.temperature} \\
|
144 |
--top-p {sampling_params.top_p} \\
|
145 |
--top-k {sampling_params.top_k} \\
|
146 |
-
--max-tokens {sampling_params.max_tokens}
|
147 |
```
|
148 |
"""
|
149 |
|
@@ -163,6 +180,7 @@ def main(
|
|
163 |
gpu_memory_utilization: float = 0.90,
|
164 |
max_model_len: Optional[int] = None,
|
165 |
tensor_parallel_size: Optional[int] = None,
|
|
|
166 |
hf_token: Optional[str] = None,
|
167 |
):
|
168 |
"""
|
@@ -183,6 +201,7 @@ def main(
|
|
183 |
gpu_memory_utilization: GPU memory utilization factor
|
184 |
max_model_len: Maximum model context length (None uses model default)
|
185 |
tensor_parallel_size: Number of GPUs to use (auto-detect if None)
|
|
|
186 |
hf_token: Hugging Face authentication token
|
187 |
"""
|
188 |
generation_start_time = datetime.now().isoformat()
|
@@ -254,29 +273,72 @@ def main(
|
|
254 |
)
|
255 |
sys.exit(1)
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
# Process messages and apply chat template
|
258 |
logger.info("Applying chat template to messages...")
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
261 |
messages = example[messages_column]
|
262 |
# Apply chat template
|
263 |
prompt = tokenizer.apply_chat_template(
|
264 |
messages, tokenize=False, add_generation_prompt=True
|
265 |
)
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
# Generate responses - vLLM handles batching internally
|
269 |
-
logger.info(f"Starting generation for {len(
|
270 |
logger.info("vLLM will handle batching and scheduling automatically")
|
271 |
|
272 |
-
outputs = llm.generate(
|
273 |
|
274 |
-
# Extract generated text
|
275 |
logger.info("Extracting generated responses...")
|
276 |
-
responses = []
|
277 |
-
|
|
|
|
|
278 |
response = output.outputs[0].text.strip()
|
279 |
-
responses
|
280 |
|
281 |
# Add responses to dataset
|
282 |
logger.info("Adding responses to dataset...")
|
@@ -292,6 +354,8 @@ def main(
|
|
292 |
tensor_parallel_size=tensor_parallel_size,
|
293 |
num_examples=total_examples,
|
294 |
generation_time=generation_start_time,
|
|
|
|
|
295 |
)
|
296 |
|
297 |
# Push dataset to hub
|
@@ -416,6 +480,18 @@ Examples:
|
|
416 |
type=str,
|
417 |
help="Hugging Face token (can also use HF_TOKEN env var)",
|
418 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
args = parser.parse_args()
|
421 |
|
@@ -434,6 +510,7 @@ Examples:
|
|
434 |
gpu_memory_utilization=args.gpu_memory_utilization,
|
435 |
max_model_len=args.max_model_len,
|
436 |
tensor_parallel_size=args.tensor_parallel_size,
|
|
|
437 |
hf_token=args.hf_token,
|
438 |
)
|
439 |
else:
|
|
|
87 |
tensor_parallel_size: int,
|
88 |
num_examples: int,
|
89 |
generation_time: str,
|
90 |
+
num_skipped: int = 0,
|
91 |
+
max_model_len_used: Optional[int] = None,
|
92 |
) -> str:
|
93 |
"""Create a comprehensive dataset card documenting the generation process."""
|
94 |
+
filtering_section = ""
|
95 |
+
if num_skipped > 0:
|
96 |
+
skip_percentage = (num_skipped / num_examples) * 100
|
97 |
+
processed = num_examples - num_skipped
|
98 |
+
filtering_section = f"""
|
99 |
+
|
100 |
+
### Filtering Statistics
|
101 |
+
|
102 |
+
- **Total Examples**: {num_examples:,}
|
103 |
+
- **Processed**: {processed:,} ({100 - skip_percentage:.1f}%)
|
104 |
+
- **Skipped (too long)**: {num_skipped:,} ({skip_percentage:.1f}%)
|
105 |
+
- **Max Model Length Used**: {max_model_len_used:,} tokens
|
106 |
+
|
107 |
+
Note: Prompts exceeding the maximum model length were skipped and have empty responses."""
|
108 |
+
|
109 |
return f"""---
|
110 |
viewer: false
|
111 |
tags:
|
|
|
124 |
- **Messages Column**: `{messages_column}`
|
125 |
- **Model**: [{model_id}](https://huggingface.co/{model_id})
|
126 |
- **Number of Examples**: {num_examples:,}
|
127 |
+
- **Generation Date**: {generation_time}{filtering_section}
|
128 |
|
129 |
### Sampling Parameters
|
130 |
|
|
|
160 |
--temperature {sampling_params.temperature} \\
|
161 |
--top-p {sampling_params.top_p} \\
|
162 |
--top-k {sampling_params.top_k} \\
|
163 |
+
--max-tokens {sampling_params.max_tokens}{f' \\\\\\n --max-model-len {max_model_len_used}' if max_model_len_used else ''}
|
164 |
```
|
165 |
"""
|
166 |
|
|
|
180 |
gpu_memory_utilization: float = 0.90,
|
181 |
max_model_len: Optional[int] = None,
|
182 |
tensor_parallel_size: Optional[int] = None,
|
183 |
+
skip_long_prompts: bool = True,
|
184 |
hf_token: Optional[str] = None,
|
185 |
):
|
186 |
"""
|
|
|
201 |
gpu_memory_utilization: GPU memory utilization factor
|
202 |
max_model_len: Maximum model context length (None uses model default)
|
203 |
tensor_parallel_size: Number of GPUs to use (auto-detect if None)
|
204 |
+
skip_long_prompts: Skip prompts exceeding max_model_len instead of failing
|
205 |
hf_token: Hugging Face authentication token
|
206 |
"""
|
207 |
generation_start_time = datetime.now().isoformat()
|
|
|
273 |
)
|
274 |
sys.exit(1)
|
275 |
|
276 |
+
# Get effective max length for filtering
|
277 |
+
if max_model_len is not None:
|
278 |
+
effective_max_len = max_model_len
|
279 |
+
else:
|
280 |
+
# Get model's default max length
|
281 |
+
effective_max_len = llm.llm_engine.model_config.max_model_len
|
282 |
+
logger.info(f"Using effective max model length: {effective_max_len}")
|
283 |
+
|
284 |
# Process messages and apply chat template
|
285 |
logger.info("Applying chat template to messages...")
|
286 |
+
all_prompts = []
|
287 |
+
valid_prompts = []
|
288 |
+
valid_indices = []
|
289 |
+
skipped_info = []
|
290 |
+
|
291 |
+
for i, example in enumerate(tqdm(dataset, desc="Processing messages")):
|
292 |
messages = example[messages_column]
|
293 |
# Apply chat template
|
294 |
prompt = tokenizer.apply_chat_template(
|
295 |
messages, tokenize=False, add_generation_prompt=True
|
296 |
)
|
297 |
+
all_prompts.append(prompt)
|
298 |
+
|
299 |
+
# Count tokens if filtering is enabled
|
300 |
+
if skip_long_prompts:
|
301 |
+
tokens = tokenizer.encode(prompt)
|
302 |
+
if len(tokens) <= effective_max_len:
|
303 |
+
valid_prompts.append(prompt)
|
304 |
+
valid_indices.append(i)
|
305 |
+
else:
|
306 |
+
skipped_info.append((i, len(tokens)))
|
307 |
+
else:
|
308 |
+
valid_prompts.append(prompt)
|
309 |
+
valid_indices.append(i)
|
310 |
+
|
311 |
+
# Log filtering results
|
312 |
+
if skip_long_prompts and skipped_info:
|
313 |
+
logger.warning(f"Skipped {len(skipped_info)} prompts that exceed max_model_len ({effective_max_len} tokens)")
|
314 |
+
logger.info("Skipped prompt details (first 10):")
|
315 |
+
for idx, (prompt_idx, token_count) in enumerate(skipped_info[:10]):
|
316 |
+
logger.info(f" - Example {prompt_idx}: {token_count} tokens (exceeds by {token_count - effective_max_len})")
|
317 |
+
if len(skipped_info) > 10:
|
318 |
+
logger.info(f" ... and {len(skipped_info) - 10} more")
|
319 |
+
|
320 |
+
skip_percentage = (len(skipped_info) / total_examples) * 100
|
321 |
+
if skip_percentage > 10:
|
322 |
+
logger.warning(f"WARNING: {skip_percentage:.1f}% of prompts were skipped!")
|
323 |
+
|
324 |
+
if not valid_prompts:
|
325 |
+
logger.error("No valid prompts to process after filtering!")
|
326 |
+
sys.exit(1)
|
327 |
|
328 |
# Generate responses - vLLM handles batching internally
|
329 |
+
logger.info(f"Starting generation for {len(valid_prompts):,} valid prompts...")
|
330 |
logger.info("vLLM will handle batching and scheduling automatically")
|
331 |
|
332 |
+
outputs = llm.generate(valid_prompts, sampling_params)
|
333 |
|
334 |
+
# Extract generated text and create full response list
|
335 |
logger.info("Extracting generated responses...")
|
336 |
+
responses = [""] * total_examples # Initialize with empty strings
|
337 |
+
|
338 |
+
for idx, output in enumerate(outputs):
|
339 |
+
original_idx = valid_indices[idx]
|
340 |
response = output.outputs[0].text.strip()
|
341 |
+
responses[original_idx] = response
|
342 |
|
343 |
# Add responses to dataset
|
344 |
logger.info("Adding responses to dataset...")
|
|
|
354 |
tensor_parallel_size=tensor_parallel_size,
|
355 |
num_examples=total_examples,
|
356 |
generation_time=generation_start_time,
|
357 |
+
num_skipped=len(skipped_info) if skip_long_prompts else 0,
|
358 |
+
max_model_len_used=effective_max_len if skip_long_prompts else None,
|
359 |
)
|
360 |
|
361 |
# Push dataset to hub
|
|
|
480 |
type=str,
|
481 |
help="Hugging Face token (can also use HF_TOKEN env var)",
|
482 |
)
|
483 |
+
parser.add_argument(
|
484 |
+
"--skip-long-prompts",
|
485 |
+
action="store_true",
|
486 |
+
default=True,
|
487 |
+
help="Skip prompts that exceed max_model_len instead of failing (default: True)",
|
488 |
+
)
|
489 |
+
parser.add_argument(
|
490 |
+
"--no-skip-long-prompts",
|
491 |
+
dest="skip_long_prompts",
|
492 |
+
action="store_false",
|
493 |
+
help="Fail on prompts that exceed max_model_len",
|
494 |
+
)
|
495 |
|
496 |
args = parser.parse_args()
|
497 |
|
|
|
510 |
gpu_memory_utilization=args.gpu_memory_utilization,
|
511 |
max_model_len=args.max_model_len,
|
512 |
tensor_parallel_size=args.tensor_parallel_size,
|
513 |
+
skip_long_prompts=args.skip_long_prompts,
|
514 |
hf_token=args.hf_token,
|
515 |
)
|
516 |
else:
|