Commit
·
5951139
1
Parent(s):
1825db8
remove flashinfer
Browse files- nanonets-ocr.py +49 -59
nanonets-ocr.py
CHANGED
|
@@ -5,14 +5,11 @@
|
|
| 5 |
# "huggingface-hub[hf_transfer]",
|
| 6 |
# "pillow",
|
| 7 |
# "vllm",
|
| 8 |
-
# "flashinfer-python",
|
| 9 |
# "tqdm",
|
| 10 |
# "toolz",
|
| 11 |
# "torch", # Added for CUDA check
|
| 12 |
# ]
|
| 13 |
-
#
|
| 14 |
-
# [[tool.uv.index]]
|
| 15 |
-
# url = "https://flashinfer.ai/whl/cu121/torch2.4/"
|
| 16 |
# ///
|
| 17 |
|
| 18 |
"""
|
|
@@ -72,12 +69,12 @@ def make_ocr_message(
|
|
| 72 |
pil_img = Image.open(image)
|
| 73 |
else:
|
| 74 |
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 75 |
-
|
| 76 |
# Convert to base64 data URI
|
| 77 |
buf = io.BytesIO()
|
| 78 |
pil_img.save(buf, format="PNG")
|
| 79 |
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
|
| 80 |
-
|
| 81 |
# Return message in vLLM format
|
| 82 |
return [
|
| 83 |
{
|
|
@@ -105,31 +102,33 @@ def main(
|
|
| 105 |
private: bool = False,
|
| 106 |
):
|
| 107 |
"""Process images from HF dataset through OCR model."""
|
| 108 |
-
|
| 109 |
# Check CUDA availability first
|
| 110 |
check_cuda_availability()
|
| 111 |
-
|
| 112 |
# Enable HF_TRANSFER for faster downloads
|
| 113 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 114 |
-
|
| 115 |
# Login to HF if token provided
|
| 116 |
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
| 117 |
if HF_TOKEN:
|
| 118 |
login(token=HF_TOKEN)
|
| 119 |
-
|
| 120 |
# Load dataset
|
| 121 |
logger.info(f"Loading dataset: {input_dataset}")
|
| 122 |
dataset = load_dataset(input_dataset, split=split)
|
| 123 |
-
|
| 124 |
# Validate image column
|
| 125 |
if image_column not in dataset.column_names:
|
| 126 |
-
raise ValueError(
|
| 127 |
-
|
|
|
|
|
|
|
| 128 |
# Limit samples if requested
|
| 129 |
if max_samples:
|
| 130 |
dataset = dataset.select(range(min(max_samples, len(dataset))))
|
| 131 |
logger.info(f"Limited to {len(dataset)} samples")
|
| 132 |
-
|
| 133 |
# Initialize vLLM
|
| 134 |
logger.info(f"Initializing vLLM with model: {model}")
|
| 135 |
llm = LLM(
|
|
@@ -139,53 +138,55 @@ def main(
|
|
| 139 |
gpu_memory_utilization=gpu_memory_utilization,
|
| 140 |
limit_mm_per_prompt={"image": 1},
|
| 141 |
)
|
| 142 |
-
|
| 143 |
sampling_params = SamplingParams(
|
| 144 |
temperature=0.0, # Deterministic for OCR
|
| 145 |
max_tokens=max_tokens,
|
| 146 |
)
|
| 147 |
-
|
| 148 |
# Process images in batches
|
| 149 |
all_markdown = []
|
| 150 |
-
|
| 151 |
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
| 152 |
-
|
| 153 |
# Process in batches to avoid memory issues
|
| 154 |
for batch_indices in tqdm(
|
| 155 |
partition_all(batch_size, range(len(dataset))),
|
| 156 |
total=(len(dataset) + batch_size - 1) // batch_size,
|
| 157 |
-
desc="OCR processing"
|
| 158 |
):
|
| 159 |
batch_indices = list(batch_indices)
|
| 160 |
batch_images = [dataset[i][image_column] for i in batch_indices]
|
| 161 |
-
|
| 162 |
try:
|
| 163 |
# Create messages for batch
|
| 164 |
batch_messages = [make_ocr_message(img) for img in batch_images]
|
| 165 |
-
|
| 166 |
# Process with vLLM
|
| 167 |
outputs = llm.chat(batch_messages, sampling_params)
|
| 168 |
-
|
| 169 |
# Extract markdown from outputs
|
| 170 |
for output in outputs:
|
| 171 |
markdown_text = output.outputs[0].text.strip()
|
| 172 |
all_markdown.append(markdown_text)
|
| 173 |
-
|
| 174 |
except Exception as e:
|
| 175 |
logger.error(f"Error processing batch: {e}")
|
| 176 |
# Add error placeholders for failed batch
|
| 177 |
all_markdown.extend(["[OCR FAILED]"] * len(batch_images))
|
| 178 |
-
|
| 179 |
# Add markdown column to dataset
|
| 180 |
logger.info("Adding markdown column to dataset")
|
| 181 |
dataset = dataset.add_column("markdown", all_markdown)
|
| 182 |
-
|
| 183 |
# Push to hub
|
| 184 |
logger.info(f"Pushing to {output_dataset}")
|
| 185 |
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
|
| 186 |
-
|
| 187 |
logger.info("✅ OCR conversion complete!")
|
| 188 |
-
logger.info(
|
|
|
|
|
|
|
| 189 |
|
| 190 |
|
| 191 |
if __name__ == "__main__":
|
|
@@ -215,13 +216,15 @@ if __name__ == "__main__":
|
|
| 215 |
print(" hfjobs run \\")
|
| 216 |
print(" --flavor l4x1 \\")
|
| 217 |
print(" --secret HF_TOKEN=... \\")
|
| 218 |
-
print(
|
|
|
|
|
|
|
| 219 |
print(" your-document-dataset \\")
|
| 220 |
print(" your-markdown-output")
|
| 221 |
print("\n" + "=" * 80)
|
| 222 |
print("\nFor full help, run: uv run nanonets-ocr.py --help")
|
| 223 |
sys.exit(0)
|
| 224 |
-
|
| 225 |
parser = argparse.ArgumentParser(
|
| 226 |
description="OCR images to markdown using Nanonets-OCR-s",
|
| 227 |
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
@@ -235,73 +238,60 @@ Examples:
|
|
| 235 |
|
| 236 |
# Process subset for testing
|
| 237 |
uv run nanonets-ocr.py large-dataset test-output --max-samples 100
|
| 238 |
-
"""
|
| 239 |
-
)
|
| 240 |
-
|
| 241 |
-
parser.add_argument(
|
| 242 |
-
"input_dataset",
|
| 243 |
-
help="Input dataset ID from Hugging Face Hub"
|
| 244 |
-
)
|
| 245 |
-
parser.add_argument(
|
| 246 |
-
"output_dataset",
|
| 247 |
-
help="Output dataset ID for Hugging Face Hub"
|
| 248 |
)
|
|
|
|
|
|
|
|
|
|
| 249 |
parser.add_argument(
|
| 250 |
"--image-column",
|
| 251 |
default="image",
|
| 252 |
-
help="Column containing images (default: image)"
|
| 253 |
)
|
| 254 |
parser.add_argument(
|
| 255 |
"--batch-size",
|
| 256 |
type=int,
|
| 257 |
default=8,
|
| 258 |
-
help="Batch size for processing (default: 8)"
|
| 259 |
)
|
| 260 |
parser.add_argument(
|
| 261 |
"--model",
|
| 262 |
default="nanonets/Nanonets-OCR-s",
|
| 263 |
-
help="Model to use (default: nanonets/Nanonets-OCR-s)"
|
| 264 |
)
|
| 265 |
parser.add_argument(
|
| 266 |
"--max-model-len",
|
| 267 |
type=int,
|
| 268 |
default=8192,
|
| 269 |
-
help="Maximum model context length (default: 8192)"
|
| 270 |
)
|
| 271 |
parser.add_argument(
|
| 272 |
"--max-tokens",
|
| 273 |
type=int,
|
| 274 |
default=4096,
|
| 275 |
-
help="Maximum tokens to generate (default: 4096)"
|
| 276 |
)
|
| 277 |
parser.add_argument(
|
| 278 |
"--gpu-memory-utilization",
|
| 279 |
type=float,
|
| 280 |
default=0.7,
|
| 281 |
-
help="GPU memory utilization (default: 0.7)"
|
| 282 |
-
)
|
| 283 |
-
parser.add_argument(
|
| 284 |
-
"--hf-token",
|
| 285 |
-
help="Hugging Face API token"
|
| 286 |
)
|
|
|
|
| 287 |
parser.add_argument(
|
| 288 |
-
"--split",
|
| 289 |
-
default="train",
|
| 290 |
-
help="Dataset split to use (default: train)"
|
| 291 |
)
|
| 292 |
parser.add_argument(
|
| 293 |
"--max-samples",
|
| 294 |
type=int,
|
| 295 |
-
help="Maximum number of samples to process (for testing)"
|
| 296 |
)
|
| 297 |
parser.add_argument(
|
| 298 |
-
"--private",
|
| 299 |
-
action="store_true",
|
| 300 |
-
help="Make output dataset private"
|
| 301 |
)
|
| 302 |
-
|
| 303 |
args = parser.parse_args()
|
| 304 |
-
|
| 305 |
main(
|
| 306 |
input_dataset=args.input_dataset,
|
| 307 |
output_dataset=args.output_dataset,
|
|
@@ -315,4 +305,4 @@ Examples:
|
|
| 315 |
split=args.split,
|
| 316 |
max_samples=args.max_samples,
|
| 317 |
private=args.private,
|
| 318 |
-
)
|
|
|
|
| 5 |
# "huggingface-hub[hf_transfer]",
|
| 6 |
# "pillow",
|
| 7 |
# "vllm",
|
|
|
|
| 8 |
# "tqdm",
|
| 9 |
# "toolz",
|
| 10 |
# "torch", # Added for CUDA check
|
| 11 |
# ]
|
| 12 |
+
#
|
|
|
|
|
|
|
| 13 |
# ///
|
| 14 |
|
| 15 |
"""
|
|
|
|
| 69 |
pil_img = Image.open(image)
|
| 70 |
else:
|
| 71 |
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 72 |
+
|
| 73 |
# Convert to base64 data URI
|
| 74 |
buf = io.BytesIO()
|
| 75 |
pil_img.save(buf, format="PNG")
|
| 76 |
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
|
| 77 |
+
|
| 78 |
# Return message in vLLM format
|
| 79 |
return [
|
| 80 |
{
|
|
|
|
| 102 |
private: bool = False,
|
| 103 |
):
|
| 104 |
"""Process images from HF dataset through OCR model."""
|
| 105 |
+
|
| 106 |
# Check CUDA availability first
|
| 107 |
check_cuda_availability()
|
| 108 |
+
|
| 109 |
# Enable HF_TRANSFER for faster downloads
|
| 110 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 111 |
+
|
| 112 |
# Login to HF if token provided
|
| 113 |
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
| 114 |
if HF_TOKEN:
|
| 115 |
login(token=HF_TOKEN)
|
| 116 |
+
|
| 117 |
# Load dataset
|
| 118 |
logger.info(f"Loading dataset: {input_dataset}")
|
| 119 |
dataset = load_dataset(input_dataset, split=split)
|
| 120 |
+
|
| 121 |
# Validate image column
|
| 122 |
if image_column not in dataset.column_names:
|
| 123 |
+
raise ValueError(
|
| 124 |
+
f"Column '{image_column}' not found. Available: {dataset.column_names}"
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
# Limit samples if requested
|
| 128 |
if max_samples:
|
| 129 |
dataset = dataset.select(range(min(max_samples, len(dataset))))
|
| 130 |
logger.info(f"Limited to {len(dataset)} samples")
|
| 131 |
+
|
| 132 |
# Initialize vLLM
|
| 133 |
logger.info(f"Initializing vLLM with model: {model}")
|
| 134 |
llm = LLM(
|
|
|
|
| 138 |
gpu_memory_utilization=gpu_memory_utilization,
|
| 139 |
limit_mm_per_prompt={"image": 1},
|
| 140 |
)
|
| 141 |
+
|
| 142 |
sampling_params = SamplingParams(
|
| 143 |
temperature=0.0, # Deterministic for OCR
|
| 144 |
max_tokens=max_tokens,
|
| 145 |
)
|
| 146 |
+
|
| 147 |
# Process images in batches
|
| 148 |
all_markdown = []
|
| 149 |
+
|
| 150 |
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
| 151 |
+
|
| 152 |
# Process in batches to avoid memory issues
|
| 153 |
for batch_indices in tqdm(
|
| 154 |
partition_all(batch_size, range(len(dataset))),
|
| 155 |
total=(len(dataset) + batch_size - 1) // batch_size,
|
| 156 |
+
desc="OCR processing",
|
| 157 |
):
|
| 158 |
batch_indices = list(batch_indices)
|
| 159 |
batch_images = [dataset[i][image_column] for i in batch_indices]
|
| 160 |
+
|
| 161 |
try:
|
| 162 |
# Create messages for batch
|
| 163 |
batch_messages = [make_ocr_message(img) for img in batch_images]
|
| 164 |
+
|
| 165 |
# Process with vLLM
|
| 166 |
outputs = llm.chat(batch_messages, sampling_params)
|
| 167 |
+
|
| 168 |
# Extract markdown from outputs
|
| 169 |
for output in outputs:
|
| 170 |
markdown_text = output.outputs[0].text.strip()
|
| 171 |
all_markdown.append(markdown_text)
|
| 172 |
+
|
| 173 |
except Exception as e:
|
| 174 |
logger.error(f"Error processing batch: {e}")
|
| 175 |
# Add error placeholders for failed batch
|
| 176 |
all_markdown.extend(["[OCR FAILED]"] * len(batch_images))
|
| 177 |
+
|
| 178 |
# Add markdown column to dataset
|
| 179 |
logger.info("Adding markdown column to dataset")
|
| 180 |
dataset = dataset.add_column("markdown", all_markdown)
|
| 181 |
+
|
| 182 |
# Push to hub
|
| 183 |
logger.info(f"Pushing to {output_dataset}")
|
| 184 |
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
|
| 185 |
+
|
| 186 |
logger.info("✅ OCR conversion complete!")
|
| 187 |
+
logger.info(
|
| 188 |
+
f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
|
| 189 |
+
)
|
| 190 |
|
| 191 |
|
| 192 |
if __name__ == "__main__":
|
|
|
|
| 216 |
print(" hfjobs run \\")
|
| 217 |
print(" --flavor l4x1 \\")
|
| 218 |
print(" --secret HF_TOKEN=... \\")
|
| 219 |
+
print(
|
| 220 |
+
" uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \\"
|
| 221 |
+
)
|
| 222 |
print(" your-document-dataset \\")
|
| 223 |
print(" your-markdown-output")
|
| 224 |
print("\n" + "=" * 80)
|
| 225 |
print("\nFor full help, run: uv run nanonets-ocr.py --help")
|
| 226 |
sys.exit(0)
|
| 227 |
+
|
| 228 |
parser = argparse.ArgumentParser(
|
| 229 |
description="OCR images to markdown using Nanonets-OCR-s",
|
| 230 |
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
|
|
| 238 |
|
| 239 |
# Process subset for testing
|
| 240 |
uv run nanonets-ocr.py large-dataset test-output --max-samples 100
|
| 241 |
+
""",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
)
|
| 243 |
+
|
| 244 |
+
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
|
| 245 |
+
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
|
| 246 |
parser.add_argument(
|
| 247 |
"--image-column",
|
| 248 |
default="image",
|
| 249 |
+
help="Column containing images (default: image)",
|
| 250 |
)
|
| 251 |
parser.add_argument(
|
| 252 |
"--batch-size",
|
| 253 |
type=int,
|
| 254 |
default=8,
|
| 255 |
+
help="Batch size for processing (default: 8)",
|
| 256 |
)
|
| 257 |
parser.add_argument(
|
| 258 |
"--model",
|
| 259 |
default="nanonets/Nanonets-OCR-s",
|
| 260 |
+
help="Model to use (default: nanonets/Nanonets-OCR-s)",
|
| 261 |
)
|
| 262 |
parser.add_argument(
|
| 263 |
"--max-model-len",
|
| 264 |
type=int,
|
| 265 |
default=8192,
|
| 266 |
+
help="Maximum model context length (default: 8192)",
|
| 267 |
)
|
| 268 |
parser.add_argument(
|
| 269 |
"--max-tokens",
|
| 270 |
type=int,
|
| 271 |
default=4096,
|
| 272 |
+
help="Maximum tokens to generate (default: 4096)",
|
| 273 |
)
|
| 274 |
parser.add_argument(
|
| 275 |
"--gpu-memory-utilization",
|
| 276 |
type=float,
|
| 277 |
default=0.7,
|
| 278 |
+
help="GPU memory utilization (default: 0.7)",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
)
|
| 280 |
+
parser.add_argument("--hf-token", help="Hugging Face API token")
|
| 281 |
parser.add_argument(
|
| 282 |
+
"--split", default="train", help="Dataset split to use (default: train)"
|
|
|
|
|
|
|
| 283 |
)
|
| 284 |
parser.add_argument(
|
| 285 |
"--max-samples",
|
| 286 |
type=int,
|
| 287 |
+
help="Maximum number of samples to process (for testing)",
|
| 288 |
)
|
| 289 |
parser.add_argument(
|
| 290 |
+
"--private", action="store_true", help="Make output dataset private"
|
|
|
|
|
|
|
| 291 |
)
|
| 292 |
+
|
| 293 |
args = parser.parse_args()
|
| 294 |
+
|
| 295 |
main(
|
| 296 |
input_dataset=args.input_dataset,
|
| 297 |
output_dataset=args.output_dataset,
|
|
|
|
| 305 |
split=args.split,
|
| 306 |
max_samples=args.max_samples,
|
| 307 |
private=args.private,
|
| 308 |
+
)
|