davanstrien HF Staff commited on
Commit
cb5bdd5
·
1 Parent(s): 1809a39

Add PDF to dataset conversion script with examples and documentation

Browse files

- Add pdf-to-dataset.py script for converting PDF directories to HF datasets
- Include example PDFs for testing
- Add comprehensive README with usage instructions
- Add CLAUDE.md for development notes
- Configure dataset viewer to be disabled
- Set up Git LFS for PDF files

.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ *.pdf filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .DS_Store
2
+ __pycache__/
3
+ *.pyc
4
+ .ruff_cache/
5
+ test-dataset/
6
+ test-*-dataset/
CLAUDE.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dataset Creation Scripts - Development Notes
2
+
3
+ This repository contains UV scripts for creating Hugging Face datasets from local files.
4
+
5
+ ## Important Configuration
6
+
7
+ ### Dataset Viewer
8
+
9
+ Since these are script repositories (not actual datasets), we should **disable the dataset viewer** to avoid confusion. Add the following to the dataset card YAML header:
10
+
11
+ ```yaml
12
+ ---
13
+ viewer: false
14
+ ---
15
+ ```
16
+
17
+ This prevents Hugging Face from trying to display the scripts as data, which would be misleading since users are meant to download and run these scripts, not view them as datasets.
18
+
19
+ Reference: https://huggingface.co/docs/hub/datasets-viewer-configure#disable-the-viewer
20
+
21
+ ## Repository Structure
22
+
23
+ ```
24
+ dataset-creation/
25
+ ├── README.md # User-facing documentation
26
+ ├── CLAUDE.md # Development notes (this file)
27
+ ├── pdf-to-dataset.py # PDF processing script
28
+ ├── pdf-examples/ # Test PDFs for development
29
+ └── .gitignore # Ignore test outputs
30
+ ```
31
+
32
+ ## Testing
33
+
34
+ Test locally with:
35
+ ```bash
36
+ uv run pdf-to-dataset.py pdf-examples test-dataset --private
37
+ ```
38
+
39
+ ## Future Scripts
40
+
41
+ Potential additions (when needed):
42
+ - `images-to-dataset.py` - Process image directories
43
+ - `text-to-dataset.py` - Convert text files
44
+ - `audio-to-dataset.py` - Process audio files
45
+ - `json-to-dataset.py` - Structure JSON data
46
+
47
+ ## Design Decisions
48
+
49
+ 1. **Simple is better**: Scripts use built-in dataset loaders where possible
50
+ 2. **No GPU required**: These are data preparation scripts, not inference
51
+ 3. **Direct upload**: Use `push_to_hub` for simplicity
52
+ 4. **Flexible output**: Upload raw objects (PDFs, images) for user processing
53
+
54
+ ## Maintenance Notes
55
+
56
+ - Always test scripts with local examples before pushing
57
+ - Keep dependencies minimal
58
+ - Follow UV script best practices from main CLAUDE.md
59
+ - Ensure ruff formatting and linting passes
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ viewer: false
3
+ tags: [uv-script, dataset-creation, pdf-processing, document-processing, tool]
4
+ task: other
5
+ language: en
6
+ ---
7
+
8
+ # Dataset Creation Scripts
9
+
10
+ Ready-to-run scripts for creating Hugging Face datasets from local files.
11
+
12
+ ## Available Scripts
13
+
14
+ ### 📄 pdf-to-dataset.py
15
+
16
+ Convert directories of PDF files into Hugging Face datasets.
17
+
18
+ **Features:**
19
+ - 📁 Uploads PDFs as dataset objects for flexible processing
20
+ - 🏷️ Automatic labeling from folder structure
21
+ - 🚀 Zero configuration - just point at your PDFs
22
+ - 📤 Direct upload to Hugging Face Hub
23
+
24
+ **Usage:**
25
+ ```bash
26
+ # Basic usage
27
+ uv run pdf-to-dataset.py /path/to/pdfs username/my-dataset
28
+
29
+ # Create private dataset
30
+ uv run pdf-to-dataset.py /path/to/pdfs username/my-dataset --private
31
+
32
+ # Organized by categories (folder structure creates labels)
33
+ # /pdfs/invoice/doc1.pdf → label: "invoice"
34
+ # /pdfs/receipt/doc2.pdf → label: "receipt"
35
+ uv run pdf-to-dataset.py /path/to/organized-pdfs username/categorized-docs
36
+ ```
37
+
38
+ **Output Format:**
39
+ The script creates a dataset where each example contains a `pdf` object that can be processed using the datasets library. Users can then extract text, convert to images, or perform other operations as needed.
40
+
41
+ ```python
42
+ from datasets import load_dataset
43
+
44
+ # Load your uploaded dataset
45
+ dataset = load_dataset("username/my-dataset")
46
+
47
+ # Access PDF objects
48
+ pdf = dataset["train"][0]["pdf"]
49
+ ```
50
+
51
+ **Requirements:**
52
+ - Directory containing PDF files
53
+ - Hugging Face account (for uploading)
54
+ - No GPU needed - runs on CPU
55
+
56
+ ## Installation
57
+
58
+ No installation needed! Just run with `uv`:
59
+
60
+ ```bash
61
+ # Run directly from GitHub
62
+ uv run https://huggingface.co/datasets/uv-scripts/dataset-creation/resolve/main/pdf-to-dataset.py --help
63
+
64
+ # Or clone and run locally
65
+ git clone https://huggingface.co/datasets/uv-scripts/dataset-creation
66
+ cd dataset-creation
67
+ uv run pdf-to-dataset.py /path/to/pdfs my-dataset
68
+ ```
69
+
70
+ ## Authentication
71
+
72
+ Scripts use Hugging Face authentication:
73
+ 1. Pass token via `--hf-token` argument
74
+ 2. Set `HF_TOKEN` environment variable
75
+ 3. Use cached credentials from `huggingface-cli login`
76
+
77
+ ## Examples
78
+
79
+ ### Create a Dataset from Research Papers
80
+ ```bash
81
+ uv run pdf-to-dataset.py ~/Documents/papers username/research-papers
82
+ ```
83
+
84
+ ### Organize Documents by Type
85
+ ```bash
86
+ # Directory structure:
87
+ # documents/
88
+ # ├── invoices/
89
+ # │ ├── invoice1.pdf
90
+ # │ └── invoice2.pdf
91
+ # └── receipts/
92
+ # ├── receipt1.pdf
93
+ # └── receipt2.pdf
94
+
95
+ uv run pdf-to-dataset.py documents/ username/financial-docs
96
+ # Creates dataset with labels: "invoices" and "receipts"
97
+ ```
98
+
99
+ ## Tips
100
+
101
+ - **Large PDFs**: The script handles large PDFs efficiently by uploading them as objects
102
+ - **Organization**: Use subdirectories to automatically create labeled datasets
103
+ - **Privacy**: Use `--private` flag for sensitive documents
104
+ - **Processing**: After upload, use the datasets library to extract text, images, or metadata as needed
105
+
106
+ ## License
107
+
108
+ MIT
pdf-examples/10.1177_1941738110375910.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bed92d69c0c9e3b7d7573e35d390691e52c6234c906ec1ba2e7d3b1370a1c22e
3
+ size 284205
pdf-examples/2025.06.11.659105v1.full.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adc2af4c6957d05c19abdebc67127868f3c73bf3d6f56ee28e6a658598bcad1f
3
+ size 5193285
pdf-to-dataset.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.11"
3
+ # dependencies = [
4
+ # "datasets",
5
+ # "huggingface-hub[hf_transfer]",
6
+ # "pdfplumber",
7
+ # ]
8
+ # ///
9
+ """
10
+ Convert a directory of PDF files to a Hugging Face dataset.
11
+
12
+ This script uses the built-in PDF support in the datasets library to create
13
+ a dataset from PDF files. Each PDF is converted to images (one per page).
14
+
15
+ Example usage:
16
+ # Basic usage - convert PDFs in a directory
17
+ uv run pdf-to-dataset.py /path/to/pdfs username/my-dataset
18
+
19
+ # Create a private dataset
20
+ uv run pdf-to-dataset.py /path/to/pdfs username/my-dataset --private
21
+
22
+ # Organize by subdirectories (creates labels)
23
+ # folder/invoice/doc1.pdf -> label: invoice
24
+ # folder/receipt/doc2.pdf -> label: receipt
25
+ uv run pdf-to-dataset.py /path/to/organized-pdfs username/categorized-pdfs
26
+ """
27
+
28
+ import logging
29
+ import os
30
+ import sys
31
+ from argparse import ArgumentParser, RawDescriptionHelpFormatter
32
+ from pathlib import Path
33
+
34
+ from datasets import load_dataset
35
+ from huggingface_hub import login
36
+
37
+ logging.basicConfig(
38
+ level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
39
+ )
40
+ logger = logging.getLogger(__name__)
41
+
42
+
43
+ def validate_directory(directory: Path) -> int:
44
+ """Validate directory and count PDF files."""
45
+ if not directory.exists():
46
+ raise ValueError(f"Directory does not exist: {directory}")
47
+
48
+ if not directory.is_dir():
49
+ raise ValueError(f"Path is not a directory: {directory}")
50
+
51
+ # Count PDFs (including in subdirectories)
52
+ pdf_count = len(list(directory.rglob("*.pdf")))
53
+
54
+ if pdf_count == 0:
55
+ raise ValueError(f"No PDF files found in directory: {directory}")
56
+
57
+ return pdf_count
58
+
59
+
60
+ def main():
61
+ parser = ArgumentParser(
62
+ description="Convert PDF files to Hugging Face datasets",
63
+ formatter_class=RawDescriptionHelpFormatter,
64
+ epilog=__doc__,
65
+ )
66
+
67
+ parser.add_argument("directory", type=Path, help="Directory containing PDF files")
68
+ parser.add_argument(
69
+ "repo_id",
70
+ type=str,
71
+ help="Hugging Face dataset repository ID (e.g., 'username/dataset-name')",
72
+ )
73
+ parser.add_argument(
74
+ "--private", action="store_true", help="Create a private dataset repository"
75
+ )
76
+ parser.add_argument(
77
+ "--hf-token",
78
+ type=str,
79
+ default=None,
80
+ help="Hugging Face API token (can also use HF_TOKEN environment variable)",
81
+ )
82
+
83
+ args = parser.parse_args()
84
+
85
+ # Handle authentication
86
+ hf_token = args.hf_token or os.environ.get("HF_TOKEN")
87
+ if hf_token:
88
+ login(token=hf_token)
89
+ else:
90
+ logger.info("No HF token provided. Will attempt to use cached credentials.")
91
+
92
+ try:
93
+ # Validate directory
94
+ pdf_count = validate_directory(args.directory)
95
+ logger.info(f"Found {pdf_count} PDF files to process")
96
+
97
+ # Load dataset using built-in PDF support
98
+ logger.info("Loading PDFs as dataset (this may take a while for large PDFs)...")
99
+ dataset = load_dataset("pdffolder", data_dir=str(args.directory))
100
+
101
+ # Log dataset info
102
+ logger.info("\nDataset created successfully!")
103
+ logger.info(f"Structure: {dataset}")
104
+
105
+ if "train" in dataset:
106
+ train_size = len(dataset["train"])
107
+ logger.info(f"Training examples: {train_size}")
108
+
109
+ # Show sample if available
110
+ if train_size > 0:
111
+ sample = dataset["train"][0]
112
+ logger.info(f"\nSample structure: {list(sample.keys())}")
113
+ if "label" in sample:
114
+ logger.info("Labels found - PDFs are organized by category")
115
+
116
+ # Push to Hub
117
+ logger.info(f"\nPushing to Hugging Face Hub: {args.repo_id}")
118
+ dataset.push_to_hub(args.repo_id, private=args.private)
119
+
120
+ logger.info("✅ Dataset uploaded successfully!")
121
+ logger.info(f"🔗 Available at: https://huggingface.co/datasets/{args.repo_id}")
122
+
123
+ # Provide next steps
124
+ logger.info("\nTo use your dataset:")
125
+ logger.info(f' dataset = load_dataset("{args.repo_id}")')
126
+
127
+ except Exception as e:
128
+ logger.error(f"Failed to create dataset: {e}")
129
+ sys.exit(1)
130
+
131
+
132
+ if __name__ == "__main__":
133
+ if len(sys.argv) == 1:
134
+ # Show help if no arguments provided
135
+ print(__doc__)
136
+ sys.exit(0)
137
+
138
+ main()