Commit
·
d272f1c
1
Parent(s):
011bc8a
update
Browse files- classify-dataset.py +356 -123
classify-dataset.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
# requires-python = ">=3.10"
|
4 |
# dependencies = [
|
5 |
# "vllm>=0.6.6",
|
6 |
-
# "transformers",
|
7 |
# "torch",
|
8 |
# "datasets",
|
9 |
# "huggingface-hub[hf_transfer]",
|
@@ -36,42 +36,95 @@ import argparse
|
|
36 |
import logging
|
37 |
import os
|
38 |
import sys
|
39 |
-
from typing import List
|
40 |
|
41 |
import torch
|
42 |
-
from datasets import load_dataset
|
43 |
from huggingface_hub import HfApi, get_token
|
|
|
44 |
from vllm import LLM, SamplingParams
|
45 |
from vllm.sampling_params import GuidedDecodingParams
|
46 |
|
47 |
# Default model - SmolLM3 for good balance of speed and quality
|
48 |
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
Text: {text}
|
55 |
-
|
56 |
-
Label:""",
|
57 |
-
|
58 |
-
"detailed": """Task: Classify the following text into EXACTLY ONE of these categories.
|
59 |
-
Available categories: {labels}
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
"reasoning": """Analyze the following text and determine which category it belongs to.
|
67 |
-
Available categories: {labels}
|
68 |
|
69 |
-
Text
|
70 |
-
{text}
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Minimum text length for valid classification
|
77 |
MIN_TEXT_LENGTH = 3
|
@@ -79,7 +132,79 @@ MIN_TEXT_LENGTH = 3
|
|
79 |
# Maximum text length (in characters) to avoid context overflow
|
80 |
MAX_TEXT_LENGTH = 4000
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
logger = logging.getLogger(__name__)
|
84 |
|
85 |
|
@@ -87,87 +212,99 @@ def parse_args():
|
|
87 |
parser = argparse.ArgumentParser(
|
88 |
description="Classify text in HuggingFace datasets using vLLM with structured outputs",
|
89 |
formatter_class=argparse.RawDescriptionHelpFormatter,
|
90 |
-
epilog=__doc__
|
91 |
)
|
92 |
-
|
93 |
# Required arguments
|
94 |
parser.add_argument(
|
95 |
"--input-dataset",
|
96 |
type=str,
|
97 |
required=True,
|
98 |
-
help="Input dataset ID on Hugging Face Hub"
|
99 |
)
|
100 |
parser.add_argument(
|
101 |
-
"--column",
|
102 |
-
type=str,
|
103 |
-
required=True,
|
104 |
-
help="Name of the text column to classify"
|
105 |
)
|
106 |
parser.add_argument(
|
107 |
"--labels",
|
108 |
type=str,
|
109 |
required=True,
|
110 |
-
help="Comma-separated list of classification labels (e.g., 'positive,negative')"
|
111 |
)
|
112 |
parser.add_argument(
|
113 |
"--output-dataset",
|
114 |
type=str,
|
115 |
required=True,
|
116 |
-
help="Output dataset ID on Hugging Face Hub"
|
117 |
)
|
118 |
-
|
119 |
# Optional arguments
|
120 |
parser.add_argument(
|
121 |
"--model",
|
122 |
type=str,
|
123 |
default=DEFAULT_MODEL,
|
124 |
-
help=f"Model to use for classification (default: {DEFAULT_MODEL})"
|
125 |
)
|
126 |
# Removed --batch-size argument as vLLM handles batching internally
|
127 |
parser.add_argument(
|
128 |
-
"--
|
129 |
type=str,
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
133 |
)
|
134 |
parser.add_argument(
|
135 |
"--max-samples",
|
136 |
type=int,
|
137 |
default=None,
|
138 |
-
help="Maximum number of samples to process (for testing)"
|
139 |
)
|
140 |
parser.add_argument(
|
141 |
"--hf-token",
|
142 |
type=str,
|
143 |
default=None,
|
144 |
-
help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)"
|
145 |
)
|
146 |
parser.add_argument(
|
147 |
"--split",
|
148 |
type=str,
|
149 |
default="train",
|
150 |
-
help="Dataset split to process (default: train)"
|
151 |
)
|
152 |
parser.add_argument(
|
153 |
"--temperature",
|
154 |
type=float,
|
155 |
default=0.1,
|
156 |
-
help="Temperature for generation (default: 0.1)"
|
157 |
)
|
158 |
parser.add_argument(
|
159 |
"--max-tokens",
|
160 |
type=int,
|
161 |
-
default=
|
162 |
-
help="Maximum tokens to generate (default:
|
163 |
)
|
164 |
parser.add_argument(
|
165 |
"--guided-backend",
|
166 |
type=str,
|
167 |
default="outlines",
|
168 |
-
help="Guided decoding backend (default: outlines)"
|
169 |
)
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
return parser.parse_args()
|
172 |
|
173 |
|
@@ -175,63 +312,62 @@ def preprocess_text(text: str) -> str:
|
|
175 |
"""Preprocess text for classification."""
|
176 |
if not text or not isinstance(text, str):
|
177 |
return ""
|
178 |
-
|
179 |
# Strip whitespace
|
180 |
text = text.strip()
|
181 |
-
|
182 |
# Truncate if too long
|
183 |
if len(text) > MAX_TEXT_LENGTH:
|
184 |
-
text = text[:MAX_TEXT_LENGTH]
|
185 |
-
|
186 |
return text
|
187 |
|
188 |
|
189 |
def validate_text(text: str) -> bool:
|
190 |
"""Check if text is valid for classification."""
|
191 |
-
|
192 |
-
return False
|
193 |
-
return True
|
194 |
|
195 |
|
196 |
def prepare_prompts(
|
197 |
-
texts: List[str],
|
198 |
-
|
199 |
-
prompt_template: str
|
200 |
) -> tuple[List[str], List[int]]:
|
201 |
-
"""Prepare prompts for classification, filtering invalid texts."""
|
202 |
prompts = []
|
203 |
valid_indices = []
|
204 |
-
|
205 |
for i, text in enumerate(texts):
|
206 |
processed_text = preprocess_text(text)
|
207 |
if validate_text(processed_text):
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
211 |
)
|
212 |
prompts.append(prompt)
|
213 |
valid_indices.append(i)
|
214 |
-
|
215 |
return prompts, valid_indices
|
216 |
|
217 |
|
218 |
def main():
|
219 |
args = parse_args()
|
220 |
-
|
221 |
# Check authentication early
|
222 |
logger.info("Checking authentication...")
|
223 |
-
token = args.hf_token
|
224 |
-
|
225 |
-
# Try to get token from environment or huggingface-cli login
|
226 |
-
token = os.environ.get("HF_TOKEN") or get_token()
|
227 |
-
|
228 |
if not token:
|
229 |
logger.error("No authentication token found. Please either:")
|
230 |
logger.error("1. Run 'huggingface-cli login'")
|
231 |
logger.error("2. Set HF_TOKEN environment variable")
|
232 |
logger.error("3. Pass --hf-token argument")
|
233 |
sys.exit(1)
|
234 |
-
|
235 |
# Validate token by checking who we are
|
236 |
try:
|
237 |
api = HfApi(token=token)
|
@@ -241,15 +377,15 @@ def main():
|
|
241 |
logger.error(f"Authentication failed: {e}")
|
242 |
logger.error("Please check your token is valid")
|
243 |
sys.exit(1)
|
244 |
-
|
245 |
# Check CUDA availability
|
246 |
if not torch.cuda.is_available():
|
247 |
logger.error("CUDA is not available. This script requires a GPU.")
|
248 |
logger.error("Please run on a machine with GPU support or use HF Jobs.")
|
249 |
sys.exit(1)
|
250 |
-
|
251 |
logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")
|
252 |
-
|
253 |
# Parse and validate labels
|
254 |
labels = [label.strip() for label in args.labels.split(",")]
|
255 |
if len(labels) < 2:
|
@@ -257,30 +393,52 @@ def main():
|
|
257 |
sys.exit(1)
|
258 |
logger.info(f"Classification labels: {labels}")
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
# Load dataset
|
261 |
logger.info(f"Loading dataset: {args.input_dataset}")
|
262 |
try:
|
263 |
dataset = load_dataset(args.input_dataset, split=args.split)
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
# Limit samples if specified
|
266 |
if args.max_samples:
|
267 |
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
|
268 |
logger.info(f"Limited dataset to {len(dataset)} samples")
|
269 |
-
|
270 |
-
|
271 |
except Exception as e:
|
272 |
logger.error(f"Failed to load dataset: {e}")
|
273 |
sys.exit(1)
|
274 |
-
|
275 |
# Verify column exists
|
276 |
if args.column not in dataset.column_names:
|
277 |
logger.error(f"Column '{args.column}' not found in dataset.")
|
278 |
logger.error(f"Available columns: {dataset.column_names}")
|
279 |
sys.exit(1)
|
280 |
-
|
281 |
# Extract texts
|
282 |
texts = dataset[args.column]
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
# Initialize vLLM
|
285 |
logger.info(f"Initializing vLLM with model: {args.model}")
|
286 |
logger.info(f"Using guided decoding backend: {args.guided_backend}")
|
@@ -295,85 +453,139 @@ def main():
|
|
295 |
except Exception as e:
|
296 |
logger.error(f"Failed to initialize vLLM: {e}")
|
297 |
sys.exit(1)
|
298 |
-
|
299 |
-
# Set up
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
314 |
# Prepare all prompts
|
315 |
logger.info("Preparing prompts for classification...")
|
316 |
-
all_prompts, valid_indices = prepare_prompts(texts, labels,
|
317 |
-
|
318 |
if not all_prompts:
|
319 |
logger.error("No valid texts found for classification.")
|
320 |
sys.exit(1)
|
321 |
-
|
322 |
logger.info(f"Prepared {len(all_prompts)} valid prompts out of {len(texts)} texts")
|
323 |
-
|
324 |
# Let vLLM handle batching internally
|
325 |
logger.info("Starting classification (vLLM will handle batching internally)...")
|
326 |
-
|
327 |
try:
|
328 |
# Generate all classifications at once - vLLM handles batching
|
329 |
outputs = llm.generate(all_prompts, sampling_params)
|
330 |
-
|
331 |
-
#
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
# Count statistics
|
339 |
-
valid_texts = len(valid_indices)
|
340 |
total_texts = len(texts)
|
341 |
-
|
342 |
except Exception as e:
|
343 |
logger.error(f"Classification failed: {e}")
|
344 |
sys.exit(1)
|
345 |
-
|
346 |
-
# Add
|
347 |
dataset = dataset.add_column("classification", all_classifications)
|
348 |
|
|
|
|
|
|
|
|
|
349 |
# Calculate statistics
|
350 |
none_count = total_texts - valid_texts
|
351 |
if none_count > 0:
|
352 |
-
logger.warning(
|
353 |
-
|
|
|
|
|
354 |
# Show classification distribution
|
355 |
label_counts = {label: all_classifications.count(label) for label in labels}
|
|
|
|
|
|
|
|
|
356 |
logger.info("Classification distribution:")
|
357 |
for label, count in label_counts.items():
|
358 |
percentage = count / total_texts * 100 if total_texts > 0 else 0
|
359 |
logger.info(f" {label}: {count} ({percentage:.1f}%)")
|
360 |
-
if none_count > 0:
|
361 |
-
none_percentage = none_count / total_texts * 100
|
362 |
-
logger.info(f" Invalid/Skipped: {none_count} ({none_percentage:.1f}%)")
|
363 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
# Log success rate
|
365 |
success_rate = (valid_texts / total_texts * 100) if total_texts > 0 else 0
|
366 |
logger.info(f"Classification success rate: {success_rate:.1f}%")
|
367 |
-
|
368 |
# Save to Hub (token already validated at start)
|
369 |
logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
|
370 |
try:
|
371 |
dataset.push_to_hub(
|
372 |
args.output_dataset,
|
373 |
token=token,
|
374 |
-
commit_message=f"Add classifications using {args.model} with structured outputs"
|
|
|
|
|
|
|
375 |
)
|
376 |
-
logger.info(f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}")
|
377 |
except Exception as e:
|
378 |
logger.error(f"Failed to push to Hub: {e}")
|
379 |
sys.exit(1)
|
@@ -381,7 +593,28 @@ def main():
|
|
381 |
|
382 |
if __name__ == "__main__":
|
383 |
if len(sys.argv) == 1:
|
384 |
-
print("Example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
print("hf jobs uv run \\")
|
386 |
print(" --flavor l4x1 \\")
|
387 |
print(" --image vllm/vllm-openai:latest \\")
|
@@ -391,5 +624,5 @@ if __name__ == "__main__":
|
|
391 |
print(" --labels 'positive,negative' \\")
|
392 |
print(" --output-dataset user/imdb-classified")
|
393 |
sys.exit(0)
|
394 |
-
|
395 |
-
main()
|
|
|
3 |
# requires-python = ">=3.10"
|
4 |
# dependencies = [
|
5 |
# "vllm>=0.6.6",
|
6 |
+
# "transformers>=4.53.0",
|
7 |
# "torch",
|
8 |
# "datasets",
|
9 |
# "huggingface-hub[hf_transfer]",
|
|
|
36 |
import logging
|
37 |
import os
|
38 |
import sys
|
39 |
+
from typing import List
|
40 |
|
41 |
import torch
|
42 |
+
from datasets import load_dataset
|
43 |
from huggingface_hub import HfApi, get_token
|
44 |
+
from transformers import AutoTokenizer
|
45 |
from vllm import LLM, SamplingParams
|
46 |
from vllm.sampling_params import GuidedDecodingParams
|
47 |
|
48 |
# Default model - SmolLM3 for good balance of speed and quality
|
49 |
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"
|
50 |
|
51 |
+
def parse_label_descriptions(desc_string: str) -> dict:
|
52 |
+
"""Parse label descriptions from CLI format 'label1:desc1,label2:desc2'."""
|
53 |
+
if not desc_string:
|
54 |
+
return {}
|
55 |
+
|
56 |
+
descriptions = {}
|
57 |
+
# Split by comma, but be careful about commas in descriptions
|
58 |
+
parts = desc_string.split(',')
|
59 |
+
|
60 |
+
current_label = None
|
61 |
+
current_desc_parts = []
|
62 |
+
|
63 |
+
for part in parts:
|
64 |
+
if ':' in part and not current_label:
|
65 |
+
# New label:description pair
|
66 |
+
label, desc = part.split(':', 1)
|
67 |
+
current_label = label.strip()
|
68 |
+
current_desc_parts = [desc.strip()]
|
69 |
+
elif ':' in part and current_label:
|
70 |
+
# Save previous label and start new one
|
71 |
+
descriptions[current_label] = ','.join(current_desc_parts)
|
72 |
+
label, desc = part.split(':', 1)
|
73 |
+
current_label = label.strip()
|
74 |
+
current_desc_parts = [desc.strip()]
|
75 |
+
else:
|
76 |
+
# Continuation of previous description (had comma in it)
|
77 |
+
current_desc_parts.append(part.strip())
|
78 |
+
|
79 |
+
# Don't forget the last one
|
80 |
+
if current_label:
|
81 |
+
descriptions[current_label] = ','.join(current_desc_parts)
|
82 |
+
|
83 |
+
return descriptions
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
def create_messages(text: str, labels: List[str], label_descriptions: dict = None, enable_reasoning: bool = False) -> List[dict]:
|
87 |
+
"""Create messages for chat template with optional label descriptions."""
|
88 |
+
|
89 |
+
# Build the classification prompt
|
90 |
+
if label_descriptions:
|
91 |
+
# Format with descriptions
|
92 |
+
categories_text = "Categories:\n"
|
93 |
+
for label in labels:
|
94 |
+
desc = label_descriptions.get(label, "")
|
95 |
+
if desc:
|
96 |
+
categories_text += f"- {label}: {desc}\n"
|
97 |
+
else:
|
98 |
+
categories_text += f"- {label}\n"
|
99 |
+
else:
|
100 |
+
# Simple format without descriptions
|
101 |
+
categories_text = f"Categories: {', '.join(labels)}"
|
102 |
+
|
103 |
+
if enable_reasoning:
|
104 |
+
# Reasoning mode: allow thinking and request JSON output
|
105 |
+
user_content = f"""Classify this text into one of these categories:
|
106 |
|
107 |
+
{categories_text}
|
|
|
|
|
|
|
108 |
|
109 |
+
Text: {text}
|
|
|
110 |
|
111 |
+
Think through your classification step by step, then provide your final answer in this JSON format:
|
112 |
+
{{"label": "your_chosen_label"}}"""
|
113 |
+
|
114 |
+
system_content = "You are a helpful classification assistant that thinks step by step."
|
115 |
+
else:
|
116 |
+
# Structured output mode: fast classification
|
117 |
+
if label_descriptions:
|
118 |
+
user_content = f"Classify this text into one of these categories:\n\n{categories_text}\nText: {text}\n\nCategory:"
|
119 |
+
else:
|
120 |
+
user_content = f"Classify this text as one of: {', '.join(labels)}\n\nText: {text}\n\nLabel:"
|
121 |
+
|
122 |
+
system_content = "You are a helpful classification assistant. /no_think"
|
123 |
+
|
124 |
+
return [
|
125 |
+
{"role": "system", "content": system_content},
|
126 |
+
{"role": "user", "content": user_content}
|
127 |
+
]
|
128 |
|
129 |
# Minimum text length for valid classification
|
130 |
MIN_TEXT_LENGTH = 3
|
|
|
132 |
# Maximum text length (in characters) to avoid context overflow
|
133 |
MAX_TEXT_LENGTH = 4000
|
134 |
|
135 |
+
|
136 |
+
def parse_reasoning_output(output: str, valid_labels: List[str]) -> tuple[str, str, bool]:
|
137 |
+
"""Parse reasoning output to extract label from JSON after </think> tag.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
tuple: (label or None, full reasoning text, parsing_success)
|
141 |
+
"""
|
142 |
+
import json
|
143 |
+
|
144 |
+
# Find the </think> tag
|
145 |
+
think_end = output.find("</think>")
|
146 |
+
|
147 |
+
if think_end != -1:
|
148 |
+
# Extract everything after </think>
|
149 |
+
json_part = output[think_end + len("</think>"):].strip()
|
150 |
+
reasoning = output[:think_end + len("</think>")]
|
151 |
+
else:
|
152 |
+
# No think tags, look for JSON in the output
|
153 |
+
# Try to find JSON by looking for {
|
154 |
+
json_start = output.find("{")
|
155 |
+
if json_start != -1:
|
156 |
+
json_part = output[json_start:].strip()
|
157 |
+
reasoning = output[:json_start].strip() if json_start > 0 else ""
|
158 |
+
else:
|
159 |
+
json_part = output
|
160 |
+
reasoning = output
|
161 |
+
|
162 |
+
# Try to parse JSON
|
163 |
+
try:
|
164 |
+
# Find the first complete JSON object
|
165 |
+
if "{" in json_part:
|
166 |
+
# Extract just the JSON object
|
167 |
+
json_str = json_part[json_part.find("{"):]
|
168 |
+
# Find the matching closing brace
|
169 |
+
brace_count = 0
|
170 |
+
end_pos = 0
|
171 |
+
for i, char in enumerate(json_str):
|
172 |
+
if char == "{":
|
173 |
+
brace_count += 1
|
174 |
+
elif char == "}":
|
175 |
+
brace_count -= 1
|
176 |
+
if brace_count == 0:
|
177 |
+
end_pos = i + 1
|
178 |
+
break
|
179 |
+
|
180 |
+
if end_pos > 0:
|
181 |
+
json_str = json_str[:end_pos]
|
182 |
+
data = json.loads(json_str)
|
183 |
+
label = data.get("label", "")
|
184 |
+
|
185 |
+
# Validate label
|
186 |
+
if label in valid_labels:
|
187 |
+
return label, output, True
|
188 |
+
else:
|
189 |
+
logger.warning(f"Parsed label '{label}' not in valid labels: {valid_labels}")
|
190 |
+
return None, output, False
|
191 |
+
else:
|
192 |
+
logger.warning("Could not find complete JSON object")
|
193 |
+
return None, output, False
|
194 |
+
else:
|
195 |
+
logger.warning("No JSON found in output")
|
196 |
+
return None, output, False
|
197 |
+
|
198 |
+
except json.JSONDecodeError as e:
|
199 |
+
logger.warning(f"JSON parsing error: {e}")
|
200 |
+
return None, output, False
|
201 |
+
except Exception as e:
|
202 |
+
logger.warning(f"Unexpected error parsing output: {e}")
|
203 |
+
return None, output, False
|
204 |
+
|
205 |
+
logging.basicConfig(
|
206 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
207 |
+
)
|
208 |
logger = logging.getLogger(__name__)
|
209 |
|
210 |
|
|
|
212 |
parser = argparse.ArgumentParser(
|
213 |
description="Classify text in HuggingFace datasets using vLLM with structured outputs",
|
214 |
formatter_class=argparse.RawDescriptionHelpFormatter,
|
215 |
+
epilog=__doc__,
|
216 |
)
|
217 |
+
|
218 |
# Required arguments
|
219 |
parser.add_argument(
|
220 |
"--input-dataset",
|
221 |
type=str,
|
222 |
required=True,
|
223 |
+
help="Input dataset ID on Hugging Face Hub",
|
224 |
)
|
225 |
parser.add_argument(
|
226 |
+
"--column", type=str, required=True, help="Name of the text column to classify"
|
|
|
|
|
|
|
227 |
)
|
228 |
parser.add_argument(
|
229 |
"--labels",
|
230 |
type=str,
|
231 |
required=True,
|
232 |
+
help="Comma-separated list of classification labels (e.g., 'positive,negative')",
|
233 |
)
|
234 |
parser.add_argument(
|
235 |
"--output-dataset",
|
236 |
type=str,
|
237 |
required=True,
|
238 |
+
help="Output dataset ID on Hugging Face Hub",
|
239 |
)
|
240 |
+
|
241 |
# Optional arguments
|
242 |
parser.add_argument(
|
243 |
"--model",
|
244 |
type=str,
|
245 |
default=DEFAULT_MODEL,
|
246 |
+
help=f"Model to use for classification (default: {DEFAULT_MODEL})",
|
247 |
)
|
248 |
# Removed --batch-size argument as vLLM handles batching internally
|
249 |
parser.add_argument(
|
250 |
+
"--label-descriptions",
|
251 |
type=str,
|
252 |
+
default=None,
|
253 |
+
help="Descriptions for each label in format 'label1:description1,label2:description2'",
|
254 |
+
)
|
255 |
+
parser.add_argument(
|
256 |
+
"--enable-reasoning",
|
257 |
+
action="store_true",
|
258 |
+
help="Enable reasoning mode with thinking traces (disables structured outputs)",
|
259 |
)
|
260 |
parser.add_argument(
|
261 |
"--max-samples",
|
262 |
type=int,
|
263 |
default=None,
|
264 |
+
help="Maximum number of samples to process (for testing)",
|
265 |
)
|
266 |
parser.add_argument(
|
267 |
"--hf-token",
|
268 |
type=str,
|
269 |
default=None,
|
270 |
+
help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)",
|
271 |
)
|
272 |
parser.add_argument(
|
273 |
"--split",
|
274 |
type=str,
|
275 |
default="train",
|
276 |
+
help="Dataset split to process (default: train)",
|
277 |
)
|
278 |
parser.add_argument(
|
279 |
"--temperature",
|
280 |
type=float,
|
281 |
default=0.1,
|
282 |
+
help="Temperature for generation (default: 0.1)",
|
283 |
)
|
284 |
parser.add_argument(
|
285 |
"--max-tokens",
|
286 |
type=int,
|
287 |
+
default=100,
|
288 |
+
help="Maximum tokens to generate (default: 100, automatically increased 20x for reasoning mode)",
|
289 |
)
|
290 |
parser.add_argument(
|
291 |
"--guided-backend",
|
292 |
type=str,
|
293 |
default="outlines",
|
294 |
+
help="Guided decoding backend (default: outlines)",
|
295 |
)
|
296 |
+
parser.add_argument(
|
297 |
+
"--shuffle",
|
298 |
+
action="store_true",
|
299 |
+
help="Shuffle dataset before selecting samples (useful with --max-samples for random sampling)",
|
300 |
+
)
|
301 |
+
parser.add_argument(
|
302 |
+
"--shuffle-seed",
|
303 |
+
type=int,
|
304 |
+
default=42,
|
305 |
+
help="Random seed for shuffling (default: 42)",
|
306 |
+
)
|
307 |
+
|
308 |
return parser.parse_args()
|
309 |
|
310 |
|
|
|
312 |
"""Preprocess text for classification."""
|
313 |
if not text or not isinstance(text, str):
|
314 |
return ""
|
315 |
+
|
316 |
# Strip whitespace
|
317 |
text = text.strip()
|
318 |
+
|
319 |
# Truncate if too long
|
320 |
if len(text) > MAX_TEXT_LENGTH:
|
321 |
+
text = f"{text[:MAX_TEXT_LENGTH]}..."
|
322 |
+
|
323 |
return text
|
324 |
|
325 |
|
326 |
def validate_text(text: str) -> bool:
|
327 |
"""Check if text is valid for classification."""
|
328 |
+
return bool(text and len(text) >= MIN_TEXT_LENGTH)
|
|
|
|
|
329 |
|
330 |
|
331 |
def prepare_prompts(
|
332 |
+
texts: List[str], labels: List[str], tokenizer: AutoTokenizer,
|
333 |
+
label_descriptions: dict = None, enable_reasoning: bool = False
|
|
|
334 |
) -> tuple[List[str], List[int]]:
|
335 |
+
"""Prepare prompts using chat template for classification, filtering invalid texts."""
|
336 |
prompts = []
|
337 |
valid_indices = []
|
338 |
+
|
339 |
for i, text in enumerate(texts):
|
340 |
processed_text = preprocess_text(text)
|
341 |
if validate_text(processed_text):
|
342 |
+
# Create messages for chat template
|
343 |
+
messages = create_messages(processed_text, labels, label_descriptions, enable_reasoning)
|
344 |
+
|
345 |
+
# Apply chat template
|
346 |
+
prompt = tokenizer.apply_chat_template(
|
347 |
+
messages,
|
348 |
+
tokenize=False,
|
349 |
+
add_generation_prompt=True
|
350 |
)
|
351 |
prompts.append(prompt)
|
352 |
valid_indices.append(i)
|
353 |
+
|
354 |
return prompts, valid_indices
|
355 |
|
356 |
|
357 |
def main():
|
358 |
args = parse_args()
|
359 |
+
|
360 |
# Check authentication early
|
361 |
logger.info("Checking authentication...")
|
362 |
+
token = args.hf_token or (os.environ.get("HF_TOKEN") or get_token())
|
363 |
+
|
|
|
|
|
|
|
364 |
if not token:
|
365 |
logger.error("No authentication token found. Please either:")
|
366 |
logger.error("1. Run 'huggingface-cli login'")
|
367 |
logger.error("2. Set HF_TOKEN environment variable")
|
368 |
logger.error("3. Pass --hf-token argument")
|
369 |
sys.exit(1)
|
370 |
+
|
371 |
# Validate token by checking who we are
|
372 |
try:
|
373 |
api = HfApi(token=token)
|
|
|
377 |
logger.error(f"Authentication failed: {e}")
|
378 |
logger.error("Please check your token is valid")
|
379 |
sys.exit(1)
|
380 |
+
|
381 |
# Check CUDA availability
|
382 |
if not torch.cuda.is_available():
|
383 |
logger.error("CUDA is not available. This script requires a GPU.")
|
384 |
logger.error("Please run on a machine with GPU support or use HF Jobs.")
|
385 |
sys.exit(1)
|
386 |
+
|
387 |
logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")
|
388 |
+
|
389 |
# Parse and validate labels
|
390 |
labels = [label.strip() for label in args.labels.split(",")]
|
391 |
if len(labels) < 2:
|
|
|
393 |
sys.exit(1)
|
394 |
logger.info(f"Classification labels: {labels}")
|
395 |
|
396 |
+
# Parse label descriptions if provided
|
397 |
+
label_descriptions = None
|
398 |
+
if args.label_descriptions:
|
399 |
+
label_descriptions = parse_label_descriptions(args.label_descriptions)
|
400 |
+
logger.info("Label descriptions provided:")
|
401 |
+
for label, desc in label_descriptions.items():
|
402 |
+
logger.info(f" {label}: {desc}")
|
403 |
+
|
404 |
# Load dataset
|
405 |
logger.info(f"Loading dataset: {args.input_dataset}")
|
406 |
try:
|
407 |
dataset = load_dataset(args.input_dataset, split=args.split)
|
408 |
+
logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'")
|
409 |
+
|
410 |
+
# Shuffle if requested
|
411 |
+
if args.shuffle:
|
412 |
+
logger.info(f"Shuffling dataset with seed {args.shuffle_seed}")
|
413 |
+
dataset = dataset.shuffle(seed=args.shuffle_seed)
|
414 |
+
|
415 |
# Limit samples if specified
|
416 |
if args.max_samples:
|
417 |
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
|
418 |
logger.info(f"Limited dataset to {len(dataset)} samples")
|
419 |
+
if args.shuffle:
|
420 |
+
logger.info("Note: Samples were randomly selected due to shuffling")
|
421 |
except Exception as e:
|
422 |
logger.error(f"Failed to load dataset: {e}")
|
423 |
sys.exit(1)
|
424 |
+
|
425 |
# Verify column exists
|
426 |
if args.column not in dataset.column_names:
|
427 |
logger.error(f"Column '{args.column}' not found in dataset.")
|
428 |
logger.error(f"Available columns: {dataset.column_names}")
|
429 |
sys.exit(1)
|
430 |
+
|
431 |
# Extract texts
|
432 |
texts = dataset[args.column]
|
433 |
+
|
434 |
+
# Load tokenizer for chat template formatting
|
435 |
+
logger.info(f"Loading tokenizer for {args.model}")
|
436 |
+
try:
|
437 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
438 |
+
except Exception as e:
|
439 |
+
logger.error(f"Failed to load tokenizer: {e}")
|
440 |
+
sys.exit(1)
|
441 |
+
|
442 |
# Initialize vLLM
|
443 |
logger.info(f"Initializing vLLM with model: {args.model}")
|
444 |
logger.info(f"Using guided decoding backend: {args.guided_backend}")
|
|
|
453 |
except Exception as e:
|
454 |
logger.error(f"Failed to initialize vLLM: {e}")
|
455 |
sys.exit(1)
|
456 |
+
|
457 |
+
# Set up sampling parameters based on mode
|
458 |
+
if args.enable_reasoning:
|
459 |
+
# Reasoning mode: no guided decoding, much more tokens for thinking
|
460 |
+
sampling_params = SamplingParams(
|
461 |
+
temperature=args.temperature,
|
462 |
+
max_tokens=args.max_tokens * 20, # 20x more tokens for extensive reasoning
|
463 |
+
)
|
464 |
+
logger.info("Using reasoning mode - model will generate thinking traces with JSON output")
|
465 |
+
else:
|
466 |
+
# Structured output mode: guided decoding
|
467 |
+
guided_params = GuidedDecodingParams(choice=labels)
|
468 |
+
sampling_params = SamplingParams(
|
469 |
+
guided_decoding=guided_params,
|
470 |
+
temperature=args.temperature,
|
471 |
+
max_tokens=args.max_tokens,
|
472 |
+
)
|
473 |
+
logger.info("Using structured output with guided_choice - outputs guaranteed to be valid labels")
|
474 |
+
|
475 |
# Prepare all prompts
|
476 |
logger.info("Preparing prompts for classification...")
|
477 |
+
all_prompts, valid_indices = prepare_prompts(texts, labels, tokenizer, label_descriptions, args.enable_reasoning)
|
478 |
+
|
479 |
if not all_prompts:
|
480 |
logger.error("No valid texts found for classification.")
|
481 |
sys.exit(1)
|
482 |
+
|
483 |
logger.info(f"Prepared {len(all_prompts)} valid prompts out of {len(texts)} texts")
|
484 |
+
|
485 |
# Let vLLM handle batching internally
|
486 |
logger.info("Starting classification (vLLM will handle batching internally)...")
|
487 |
+
|
488 |
try:
|
489 |
# Generate all classifications at once - vLLM handles batching
|
490 |
outputs = llm.generate(all_prompts, sampling_params)
|
491 |
+
|
492 |
+
# Process outputs based on mode
|
493 |
+
if args.enable_reasoning:
|
494 |
+
# Reasoning mode: parse JSON and extract reasoning
|
495 |
+
all_classifications = [None] * len(texts)
|
496 |
+
all_reasoning = [None] * len(texts)
|
497 |
+
all_parsing_success = [False] * len(texts)
|
498 |
+
|
499 |
+
for idx, output in enumerate(outputs):
|
500 |
+
original_idx = valid_indices[idx]
|
501 |
+
generated_text = output.outputs[0].text.strip()
|
502 |
+
|
503 |
+
# Parse the reasoning output
|
504 |
+
label, reasoning, success = parse_reasoning_output(generated_text, labels)
|
505 |
+
|
506 |
+
all_classifications[original_idx] = label
|
507 |
+
all_reasoning[original_idx] = reasoning
|
508 |
+
all_parsing_success[original_idx] = success
|
509 |
+
|
510 |
+
# Log first few examples
|
511 |
+
if idx < 3:
|
512 |
+
logger.info(f"\nExample {idx + 1} output:")
|
513 |
+
logger.info(f"Raw output: {generated_text[:200]}...")
|
514 |
+
logger.info(f"Parsed label: {label}")
|
515 |
+
logger.info(f"Parsing success: {success}")
|
516 |
+
|
517 |
+
# Count parsing statistics
|
518 |
+
parsing_success_count = sum(1 for s in all_parsing_success if s)
|
519 |
+
parsing_fail_count = sum(1 for s in all_parsing_success if s is not None and not s)
|
520 |
+
logger.info(f"\nParsing statistics:")
|
521 |
+
logger.info(f" Successful: {parsing_success_count}/{len(valid_indices)} ({parsing_success_count/len(valid_indices)*100:.1f}%)")
|
522 |
+
logger.info(f" Failed: {parsing_fail_count}/{len(valid_indices)} ({parsing_fail_count/len(valid_indices)*100:.1f}%)")
|
523 |
+
|
524 |
+
valid_texts = parsing_success_count
|
525 |
+
else:
|
526 |
+
# Structured output mode: direct classification
|
527 |
+
all_classifications = [None] * len(texts)
|
528 |
+
for idx, output in enumerate(outputs):
|
529 |
+
original_idx = valid_indices[idx]
|
530 |
+
generated_text = output.outputs[0].text.strip()
|
531 |
+
all_classifications[original_idx] = generated_text
|
532 |
+
|
533 |
+
valid_texts = len(valid_indices)
|
534 |
+
|
535 |
# Count statistics
|
|
|
536 |
total_texts = len(texts)
|
537 |
+
|
538 |
except Exception as e:
|
539 |
logger.error(f"Classification failed: {e}")
|
540 |
sys.exit(1)
|
541 |
+
|
542 |
+
# Add columns to dataset
|
543 |
dataset = dataset.add_column("classification", all_classifications)
|
544 |
|
545 |
+
if args.enable_reasoning:
|
546 |
+
dataset = dataset.add_column("reasoning", all_reasoning)
|
547 |
+
dataset = dataset.add_column("parsing_success", all_parsing_success)
|
548 |
+
|
549 |
# Calculate statistics
|
550 |
none_count = total_texts - valid_texts
|
551 |
if none_count > 0:
|
552 |
+
logger.warning(
|
553 |
+
f"{none_count} texts were too short or invalid for classification"
|
554 |
+
)
|
555 |
+
|
556 |
# Show classification distribution
|
557 |
label_counts = {label: all_classifications.count(label) for label in labels}
|
558 |
+
|
559 |
+
# Count None values separately
|
560 |
+
none_classifications = all_classifications.count(None)
|
561 |
+
|
562 |
logger.info("Classification distribution:")
|
563 |
for label, count in label_counts.items():
|
564 |
percentage = count / total_texts * 100 if total_texts > 0 else 0
|
565 |
logger.info(f" {label}: {count} ({percentage:.1f}%)")
|
|
|
|
|
|
|
566 |
|
567 |
+
if none_classifications > 0:
|
568 |
+
none_percentage = none_classifications / total_texts * 100
|
569 |
+
if args.enable_reasoning:
|
570 |
+
logger.info(f" Failed to parse: {none_classifications} ({none_percentage:.1f}%)")
|
571 |
+
else:
|
572 |
+
logger.info(f" Invalid/Skipped: {none_classifications} ({none_percentage:.1f}%)")
|
573 |
+
|
574 |
# Log success rate
|
575 |
success_rate = (valid_texts / total_texts * 100) if total_texts > 0 else 0
|
576 |
logger.info(f"Classification success rate: {success_rate:.1f}%")
|
577 |
+
|
578 |
# Save to Hub (token already validated at start)
|
579 |
logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
|
580 |
try:
|
581 |
dataset.push_to_hub(
|
582 |
args.output_dataset,
|
583 |
token=token,
|
584 |
+
commit_message=f"Add classifications using {args.model} {'with reasoning' if args.enable_reasoning else 'with structured outputs'}",
|
585 |
+
)
|
586 |
+
logger.info(
|
587 |
+
f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}"
|
588 |
)
|
|
|
589 |
except Exception as e:
|
590 |
logger.error(f"Failed to push to Hub: {e}")
|
591 |
sys.exit(1)
|
|
|
593 |
|
594 |
if __name__ == "__main__":
|
595 |
if len(sys.argv) == 1:
|
596 |
+
print("Example commands:")
|
597 |
+
print("\n# Simple classification:")
|
598 |
+
print("uv run classify-dataset.py \\")
|
599 |
+
print(" --input-dataset stanfordnlp/imdb \\")
|
600 |
+
print(" --column text \\")
|
601 |
+
print(" --labels 'positive,negative' \\")
|
602 |
+
print(" --output-dataset user/imdb-classified")
|
603 |
+
print("\n# With label descriptions:")
|
604 |
+
print("uv run classify-dataset.py \\")
|
605 |
+
print(" --input-dataset user/support-tickets \\")
|
606 |
+
print(" --column content \\")
|
607 |
+
print(" --labels 'bug,feature,question' \\")
|
608 |
+
print(" --label-descriptions 'bug:something is broken or not working,feature:request for new functionality,question:asking for help or clarification' \\")
|
609 |
+
print(" --output-dataset user/tickets-classified")
|
610 |
+
print("\n# With reasoning mode (thinking + JSON output):")
|
611 |
+
print("uv run classify-dataset.py \\")
|
612 |
+
print(" --input-dataset stanfordnlp/imdb \\")
|
613 |
+
print(" --column text \\")
|
614 |
+
print(" --labels 'positive,negative,neutral' \\")
|
615 |
+
print(" --enable-reasoning \\")
|
616 |
+
print(" --output-dataset user/imdb-reasoned")
|
617 |
+
print("\n# HF Jobs example:")
|
618 |
print("hf jobs uv run \\")
|
619 |
print(" --flavor l4x1 \\")
|
620 |
print(" --image vllm/vllm-openai:latest \\")
|
|
|
624 |
print(" --labels 'positive,negative' \\")
|
625 |
print(" --output-dataset user/imdb-classified")
|
626 |
sys.exit(0)
|
627 |
+
|
628 |
+
main()
|