File size: 12,288 Bytes
52de1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e8dc67
52de1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e8dc67
 
52de1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acf6917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52de1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acf6917
52de1e3
 
 
 
7e8dc67
52de1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "vllm>=0.6.6",
#     "transformers",
#     "torch",
#     "datasets",
#     "huggingface-hub[hf_transfer]",
# ]
# ///

"""
Classify text columns in Hugging Face datasets using vLLM with structured outputs.

This script provides efficient GPU-based classification with guaranteed valid outputs,
optimized for running on HF Jobs.

Example:
    uv run classify-dataset.py \\
        --input-dataset imdb \\
        --column text \\
        --labels "positive,negative" \\
        --output-dataset user/imdb-classified

HF Jobs example:
    hfjobs run --flavor a10 uv run classify-dataset.py \\
        --input-dataset user/emails \\
        --column content \\
        --labels "spam,ham" \\
        --output-dataset user/emails-classified \\
        --prompt-style reasoning
"""

import argparse
import logging
import os
import sys
from typing import List, Dict, Any, Optional

import torch
from datasets import load_dataset, Dataset
from huggingface_hub import HfApi, get_token
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams

# Default model - SmolLM3 for good balance of speed and quality
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"

# Prompt styles for classification
PROMPT_STYLES = {
    "simple": """Classify this text as one of: {labels}

Text: {text}

Label:""",
    
    "detailed": """Task: Classify the following text into EXACTLY ONE of these categories.
Available categories: {labels}

Text to classify:
{text}

Category:""",
    
    "reasoning": """Analyze the following text and determine which category it belongs to.
Available categories: {labels}

Text to analyze:
{text}

Brief analysis: Let me examine the key aspects of this text.
Category:""",
}

# Minimum text length for valid classification
MIN_TEXT_LENGTH = 3

# Maximum text length (in characters) to avoid context overflow
MAX_TEXT_LENGTH = 4000

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser(
        description="Classify text in HuggingFace datasets using vLLM with structured outputs",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog=__doc__
    )
    
    # Required arguments
    parser.add_argument(
        "--input-dataset",
        type=str,
        required=True,
        help="Input dataset ID on Hugging Face Hub"
    )
    parser.add_argument(
        "--column",
        type=str,
        required=True,
        help="Name of the text column to classify"
    )
    parser.add_argument(
        "--labels",
        type=str,
        required=True,
        help="Comma-separated list of classification labels (e.g., 'positive,negative')"
    )
    parser.add_argument(
        "--output-dataset",
        type=str,
        required=True,
        help="Output dataset ID on Hugging Face Hub"
    )
    
    # Optional arguments
    parser.add_argument(
        "--model",
        type=str,
        default=DEFAULT_MODEL,
        help=f"Model to use for classification (default: {DEFAULT_MODEL})"
    )
    # Removed --batch-size argument as vLLM handles batching internally
    parser.add_argument(
        "--prompt-style",
        type=str,
        choices=list(PROMPT_STYLES.keys()),
        default="simple",
        help="Prompt style to use (default: simple)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        default=None,
        help="Maximum number of samples to process (for testing)"
    )
    parser.add_argument(
        "--hf-token",
        type=str,
        default=None,
        help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)"
    )
    parser.add_argument(
        "--split",
        type=str,
        default="train",
        help="Dataset split to process (default: train)"
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.1,
        help="Temperature for generation (default: 0.1)"
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=50,
        help="Maximum tokens to generate (default: 50)"
    )
    parser.add_argument(
        "--guided-backend",
        type=str,
        default="outlines",
        help="Guided decoding backend (default: outlines)"
    )
    
    return parser.parse_args()


def preprocess_text(text: str) -> str:
    """Preprocess text for classification."""
    if not text or not isinstance(text, str):
        return ""
    
    # Strip whitespace
    text = text.strip()
    
    # Truncate if too long
    if len(text) > MAX_TEXT_LENGTH:
        text = text[:MAX_TEXT_LENGTH] + "..."
        
    return text


def validate_text(text: str) -> bool:
    """Check if text is valid for classification."""
    if not text or len(text) < MIN_TEXT_LENGTH:
        return False
    return True


def prepare_prompts(
    texts: List[str],
    labels: List[str],
    prompt_template: str
) -> tuple[List[str], List[int]]:
    """Prepare prompts for classification, filtering invalid texts."""
    prompts = []
    valid_indices = []
    
    for i, text in enumerate(texts):
        processed_text = preprocess_text(text)
        if validate_text(processed_text):
            prompt = prompt_template.format(
                labels=", ".join(labels),
                text=processed_text
            )
            prompts.append(prompt)
            valid_indices.append(i)
    
    return prompts, valid_indices


def main():
    args = parse_args()
    
    # Check authentication early
    logger.info("Checking authentication...")
    token = args.hf_token
    if not token:
        # Try to get token from environment or huggingface-cli login
        token = os.environ.get("HF_TOKEN") or get_token()
    
    if not token:
        logger.error("No authentication token found. Please either:")
        logger.error("1. Run 'huggingface-cli login'")
        logger.error("2. Set HF_TOKEN environment variable")
        logger.error("3. Pass --hf-token argument")
        sys.exit(1)
    
    # Validate token by checking who we are
    try:
        api = HfApi(token=token)
        user_info = api.whoami()
        logger.info(f"Authenticated as: {user_info['name']}")
    except Exception as e:
        logger.error(f"Authentication failed: {e}")
        logger.error("Please check your token is valid")
        sys.exit(1)
    
    # Check CUDA availability
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with GPU support or use HF Jobs.")
        sys.exit(1)
    
    logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")
    
    # Parse and validate labels
    labels = [label.strip() for label in args.labels.split(",")]
    if len(labels) < 2:
        logger.error("At least two labels are required for classification.")
        sys.exit(1)
    logger.info(f"Classification labels: {labels}")
    
    # Load dataset
    logger.info(f"Loading dataset: {args.input_dataset}")
    try:
        dataset = load_dataset(args.input_dataset, split=args.split)
        
        # Limit samples if specified
        if args.max_samples:
            dataset = dataset.select(range(min(args.max_samples, len(dataset))))
            logger.info(f"Limited dataset to {len(dataset)} samples")
        
        logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'")
    except Exception as e:
        logger.error(f"Failed to load dataset: {e}")
        sys.exit(1)
    
    # Verify column exists
    if args.column not in dataset.column_names:
        logger.error(f"Column '{args.column}' not found in dataset.")
        logger.error(f"Available columns: {dataset.column_names}")
        sys.exit(1)
    
    # Extract texts
    texts = dataset[args.column]
    
    # Initialize vLLM
    logger.info(f"Initializing vLLM with model: {args.model}")
    logger.info(f"Using guided decoding backend: {args.guided_backend}")
    try:
        llm = LLM(
            model=args.model,
            trust_remote_code=True,
            dtype="auto",
            gpu_memory_utilization=0.95,
            guided_decoding_backend=args.guided_backend,
        )
    except Exception as e:
        logger.error(f"Failed to initialize vLLM: {e}")
        sys.exit(1)
    
    # Set up guided decoding parameters
    guided_params = GuidedDecodingParams(choice=labels)
    
    # Set up sampling parameters with structured output
    sampling_params = SamplingParams(
        guided_decoding=guided_params,
        temperature=args.temperature,
        max_tokens=args.max_tokens,
    )
    
    # Get prompt template
    prompt_template = PROMPT_STYLES[args.prompt_style]
    logger.info(f"Using prompt style '{args.prompt_style}'")
    logger.info("Using structured output with guided_choice - outputs guaranteed to be valid labels")
    
    # Prepare all prompts
    logger.info("Preparing prompts for classification...")
    all_prompts, valid_indices = prepare_prompts(texts, labels, prompt_template)
    
    if not all_prompts:
        logger.error("No valid texts found for classification.")
        sys.exit(1)
    
    logger.info(f"Prepared {len(all_prompts)} valid prompts out of {len(texts)} texts")
    
    # Let vLLM handle batching internally
    logger.info("Starting classification (vLLM will handle batching internally)...")
    
    try:
        # Generate all classifications at once - vLLM handles batching
        outputs = llm.generate(all_prompts, sampling_params)
        
        # Map results back to original indices
        all_classifications = [None] * len(texts)
        for idx, output in enumerate(outputs):
            original_idx = valid_indices[idx]
            generated_text = output.outputs[0].text.strip()
            all_classifications[original_idx] = generated_text
        
        # Count statistics
        valid_texts = len(valid_indices)
        total_texts = len(texts)
        
    except Exception as e:
        logger.error(f"Classification failed: {e}")
        sys.exit(1)
    
    # Add classifications to dataset
    dataset = dataset.add_column("classification", all_classifications)
    
    # Calculate statistics
    none_count = total_texts - valid_texts
    if none_count > 0:
        logger.warning(f"{none_count} texts were too short or invalid for classification")
    
    # Show classification distribution
    label_counts = {label: all_classifications.count(label) for label in labels}
    logger.info("Classification distribution:")
    for label, count in label_counts.items():
        percentage = count / total_texts * 100 if total_texts > 0 else 0
        logger.info(f"  {label}: {count} ({percentage:.1f}%)")
    if none_count > 0:
        none_percentage = none_count / total_texts * 100
        logger.info(f"  Invalid/Skipped: {none_count} ({none_percentage:.1f}%)")
    
    # Log success rate
    success_rate = (valid_texts / total_texts * 100) if total_texts > 0 else 0
    logger.info(f"Classification success rate: {success_rate:.1f}%")
    
    # Save to Hub (token already validated at start)
    logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
    try:
        dataset.push_to_hub(
            args.output_dataset,
            token=token,
            commit_message=f"Add classifications using {args.model} with structured outputs"
        )
        logger.info(f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}")
    except Exception as e:
        logger.error(f"Failed to push to Hub: {e}")
        sys.exit(1)


if __name__ == "__main__":
    if len(sys.argv) == 1:
        print("Example HF Jobs command:")
        print("hf jobs uv run \\")
        print("  --flavor l4x1 \\")
        print("  --image vllm/vllm-openai:latest \\")
        print("  classify-dataset.py \\")
        print("  --input-dataset stanfordnlp/imdb \\")
        print("  --column text \\")
        print("  --labels 'positive,negative' \\")
        print("  --output-dataset user/imdb-classified")
        sys.exit(0)
    
    main()