# /// script # requires-python = ">=3.10" # dependencies = [ # "huggingface-hub[hf_transfer]", # "torch", # For GPU detection # "datasets", # For dataset sampling # ] # /// """ Generate static Embedding Atlas visualizations and deploy to HuggingFace Spaces. This script creates interactive embedding visualizations that run entirely in the browser, using WebGPU acceleration for smooth performance with millions of points. Example usage: # Basic usage (creates Space from dataset) uv run atlas-export.py \ stanfordnlp/imdb \ --space-name my-imdb-viz # With custom model and configuration uv run atlas-export.py \ beans \ --space-name bean-disease-atlas \ --image-column image \ --model openai/clip-vit-base-patch32 \ --sample 10000 # Run on HF Jobs with GPU (requires HF token for Space deployment) # Get your token: python -c "from huggingface_hub import get_token; print(get_token())" hf jobs uv run --flavor t4-small \ -s HF_TOKEN=your-token-here \ https://huggingface.co/datasets/uv-scripts/build-atlas/raw/main/atlas-export.py \ my-dataset \ --space-name my-atlas \ --model nomic-ai/nomic-embed-text-v1.5 # Use pre-computed embeddings uv run atlas-export.py \ my-dataset-with-embeddings \ --space-name my-viz \ --no-compute-embeddings \ --x-column umap_x \ --y-column umap_y """ import argparse import logging import os import shutil import subprocess import sys import tempfile import zipfile from pathlib import Path from typing import Optional from huggingface_hub import HfApi, create_repo, get_token, login, upload_folder logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def check_gpu_available() -> bool: """Check if GPU is available for computation.""" try: import torch return torch.cuda.is_available() except ImportError: return False def sample_dataset_to_parquet( dataset_id: str, sample_size: int, split: str = "train", ) -> tuple[Path, Path]: """Sample dataset and save to local parquet file.""" from datasets import load_dataset logger.info(f"Pre-sampling {sample_size} examples from {dataset_id}...") # Load with streaming to avoid loading entire dataset ds = load_dataset(dataset_id, streaming=True, split=split) # Shuffle and sample ds = ds.shuffle(seed=42) sampled_ds = ds.take(sample_size) # Create temporary directory and parquet file temp_dir = Path(tempfile.mkdtemp(prefix="atlas_data_")) parquet_path = temp_dir / "data.parquet" logger.info(f"Saving sampled data to temporary file...") sampled_ds.to_parquet(str(parquet_path)) file_size = parquet_path.stat().st_size / (1024 * 1024) # MB logger.info(f"Created {file_size:.1f}MB parquet file with {sample_size} samples") return parquet_path, temp_dir def build_atlas_command(args) -> tuple[list, str, Optional[Path]]: """Build the embedding-atlas command with all parameters.""" temp_data_dir = None # If sampling is requested, pre-sample the dataset if args.sample: parquet_path, temp_data_dir = sample_dataset_to_parquet( args.dataset_id, args.sample, args.split ) dataset_input = str(parquet_path) else: dataset_input = args.dataset_id # Use uvx to run embedding-atlas with required dependencies # Include hf-transfer for faster downloads when HF_HUB_ENABLE_HF_TRANSFER is set cmd = [ "uvx", "--with", "datasets", "--with", "hf-transfer", "embedding-atlas", dataset_input, ] # Add all optional parameters if args.model: cmd.extend(["--model", args.model]) # Always specify text column to avoid interactive prompt text_col = args.text_column or "text" # Default to "text" if not specified cmd.extend(["--text", text_col]) if args.image_column: cmd.extend(["--image", args.image_column]) if args.split and not args.sample: # Don't add split if we pre-sampled cmd.extend(["--split", args.split]) # Remove the --sample parameter since we've already sampled # if args.sample: # cmd.extend(["--sample", str(args.sample)]) if args.trust_remote_code: cmd.append("--trust-remote-code") if not args.compute_embeddings: cmd.append("--no-compute-embeddings") if args.x_column: cmd.extend(["--x", args.x_column]) if args.y_column: cmd.extend(["--y", args.y_column]) if args.neighbors_column: cmd.extend(["--neighbors", args.neighbors_column]) # Add export flag with output path export_path = "atlas_export.zip" cmd.extend(["--export-application", export_path]) return cmd, export_path, temp_data_dir def create_space_readme(args) -> str: """Generate README.md content for the Space.""" title = args.space_name.replace("-", " ").title() readme = f"""--- title: {title} emoji: πŸ—ΊοΈ colorFrom: blue colorTo: purple sdk: static pinned: false license: mit --- # πŸ—ΊοΈ {title} Interactive embedding visualization of [{args.dataset_id}](https://huggingface.co/datasets/{args.dataset_id}) using [Embedding Atlas](https://github.com/apple/embedding-atlas). ## Features - Interactive embedding visualization - Real-time search and filtering - Automatic clustering with labels - WebGPU-accelerated rendering """ if args.model: readme += f"\n## Model\n\nEmbeddings generated using: `{args.model}`\n" if args.sample: readme += f"\n## Data\n\nVisualization includes {args.sample:,} samples from the dataset.\n" readme += """ ## How to Use - **Click and drag** to navigate - **Scroll** to zoom in/out - **Click** on points to see details - **Search** using the search box - **Filter** using metadata panels --- *Generated with [UV Scripts Atlas Export](https://huggingface.co/uv-scripts)* """ return readme def extract_and_prepare_static_files(zip_path: str, output_dir: Path) -> None: """Extract the exported atlas ZIP and prepare for static deployment.""" logger.info(f"Extracting {zip_path} to {output_dir}") with zipfile.ZipFile(zip_path, "r") as zip_ref: zip_ref.extractall(output_dir) # The ZIP should contain index.html and associated files if not (output_dir / "index.html").exists(): raise FileNotFoundError("index.html not found in exported atlas") logger.info(f"Extracted {len(list(output_dir.iterdir()))} items") def deploy_to_space( output_dir: Path, space_name: str, organization: Optional[str] = None, private: bool = False, hf_token: Optional[str] = None, ) -> str: """Deploy the static files to a HuggingFace Space.""" api = HfApi(token=hf_token) # Construct full repo ID if organization: repo_id = f"{organization}/{space_name}" else: # Get username from API user_info = api.whoami() username = user_info["name"] repo_id = f"{username}/{space_name}" logger.info(f"Creating Space: {repo_id}") # Create the Space repository try: create_repo( repo_id, repo_type="space", space_sdk="static", private=private, token=hf_token, exist_ok=True, # Allow updating existing Space ) logger.info(f"Created new Space: {repo_id}") except Exception as e: if "already exists" in str(e): logger.info(f"Space {repo_id} already exists, updating...") else: raise # Upload all files logger.info("Uploading files to Space...") upload_folder( folder_path=str(output_dir), repo_id=repo_id, repo_type="space", token=hf_token ) space_url = f"https://huggingface.co/spaces/{repo_id}" logger.info(f"βœ… Space deployed successfully: {space_url}") return space_url def main(): # Enable HF Transfer for faster downloads if available os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1") parser = argparse.ArgumentParser( description="Generate and deploy static Embedding Atlas visualizations", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=__doc__, ) # Required arguments parser.add_argument( "dataset_id", type=str, help="HuggingFace dataset ID to visualize", ) # Space configuration parser.add_argument( "--space-name", type=str, required=True, help="Name for the HuggingFace Space", ) parser.add_argument( "--organization", type=str, help="HuggingFace organization (default: your username)", ) parser.add_argument( "--private", action="store_true", help="Make the Space private", ) # Atlas configuration parser.add_argument( "--model", type=str, help="Embedding model to use (e.g., sentence-transformers/all-MiniLM-L6-v2)", ) parser.add_argument( "--text-column", type=str, help="Name of text column (default: auto-detect)", ) parser.add_argument( "--image-column", type=str, help="Name of image column for image datasets", ) parser.add_argument( "--split", type=str, default="train", help="Dataset split to use (default: train)", ) parser.add_argument( "--sample", type=int, help="Number of samples to visualize (default: all)", ) parser.add_argument( "--trust-remote-code", action="store_true", help="Trust remote code in dataset/model", ) # Pre-computed embeddings parser.add_argument( "--no-compute-embeddings", action="store_false", dest="compute_embeddings", help="Use pre-computed embeddings from dataset", ) parser.add_argument( "--x-column", type=str, help="Column with X coordinates (for pre-computed projections)", ) parser.add_argument( "--y-column", type=str, help="Column with Y coordinates (for pre-computed projections)", ) parser.add_argument( "--neighbors-column", type=str, help="Column with neighbor indices (for pre-computed)", ) # Additional options parser.add_argument( "--hf-token", type=str, help="HuggingFace API token (or set HF_TOKEN env var)", ) parser.add_argument( "--local-only", action="store_true", help="Only generate locally, don't deploy to Space", ) parser.add_argument( "--output-dir", type=str, help="Local directory for output (default: temp directory)", ) args = parser.parse_args() # Check GPU availability if check_gpu_available(): logger.info("πŸš€ GPU detected - may accelerate embedding generation") else: logger.info("πŸ’» Running on CPU - embedding generation may be slower") # Login to HuggingFace if needed if not args.local_only: # Try to get token from various sources hf_token = ( args.hf_token or os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN") or get_token() # This will check HF CLI login ) if hf_token: login(token=hf_token) logger.info("βœ… Authenticated with Hugging Face") else: # Check if running in non-interactive environment (HF Jobs, CI, etc.) is_interactive = sys.stdin.isatty() if is_interactive: logger.warning( "No HF token provided. You may not be able to push to the Hub." ) response = input("Continue anyway? (y/n): ") if response.lower() != "y": sys.exit(0) else: # In non-interactive environments, fail immediately if no token logger.error( "No HF token found. Cannot deploy to Space in non-interactive environment." ) logger.error( "Please set HF_TOKEN environment variable or use --hf-token argument." ) logger.error( "Checked: HF_TOKEN, HUGGING_FACE_HUB_TOKEN, and HF CLI login" ) sys.exit(1) # Set up output directory if args.output_dir: output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) temp_dir = None else: temp_dir = tempfile.mkdtemp(prefix="atlas_export_") output_dir = Path(temp_dir) logger.info(f"Using temporary directory: {output_dir}") temp_data_dir = None # Initialize to avoid UnboundLocalError try: # Build and run embedding-atlas command cmd, export_path, temp_data_dir = build_atlas_command(args) logger.info(f"Running command: {' '.join(cmd)}") # Run the command result = subprocess.run(cmd, capture_output=True, text=True) if result.returncode != 0: logger.error(f"Atlas export failed with return code {result.returncode}") logger.error(f"STDOUT: {result.stdout}") logger.error(f"STDERR: {result.stderr}") sys.exit(1) logger.info("βœ… Atlas export completed successfully") # Extract the exported files extract_and_prepare_static_files(export_path, output_dir) # Create README for the Space readme_content = create_space_readme(args) (output_dir / "README.md").write_text(readme_content) if args.local_only: logger.info(f"βœ… Static files prepared in: {output_dir}") logger.info( "To deploy manually, upload the contents to a HuggingFace Space with sdk: static" ) else: # Deploy to HuggingFace Space space_url = deploy_to_space( output_dir, args.space_name, args.organization, args.private, hf_token ) logger.info(f"\nπŸŽ‰ Success! Your atlas is live at: {space_url}") logger.info(f"The visualization will be available in a few moments.") # Clean up the ZIP file if Path(export_path).exists(): os.remove(export_path) finally: # Clean up temp directory if used if temp_dir and not args.local_only: shutil.rmtree(temp_dir) logger.info("Cleaned up temporary files") # Also clean up the data sampling directory if temp_data_dir and temp_data_dir.exists(): shutil.rmtree(temp_data_dir) logger.info("Cleaned up sampled data") if __name__ == "__main__": # Show example commands if no args provided if len(sys.argv) == 1: print("Example commands:\n") print("# Basic usage:") print("uv run atlas-export.py stanfordnlp/imdb --space-name imdb-atlas\n") print("# With custom model and sampling:") print( "uv run atlas-export.py my-dataset --space-name my-viz --model nomic-ai/nomic-embed-text-v1.5 --sample 10000\n" ) print("# For HF Jobs with GPU (experimental UV support):") print( '# First get your token: python -c "from huggingface_hub import get_token; print(get_token())"' ) print( "hf jobs uv run --flavor t4-small -s HF_TOKEN=your-token-here https://huggingface.co/datasets/uv-scripts/build-atlas/raw/main/atlas-export.py dataset --space-name viz --model sentence-transformers/all-mpnet-base-v2\n" ) print("# Local generation only:") print( "uv run atlas-export.py dataset --space-name test --local-only --output-dir ./atlas-output" ) sys.exit(0) main()