|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Generate static Embedding Atlas visualizations and deploy to HuggingFace Spaces. |
|
|
|
This script creates interactive embedding visualizations that run entirely in the browser, |
|
using WebGPU acceleration for smooth performance with millions of points. |
|
|
|
Example usage: |
|
# Basic usage (creates Space from dataset) |
|
uv run atlas-export.py \ |
|
stanfordnlp/imdb \ |
|
--space-name my-imdb-viz |
|
|
|
# With custom model and configuration |
|
uv run atlas-export.py \ |
|
beans \ |
|
--space-name bean-disease-atlas \ |
|
--image-column image \ |
|
--model openai/clip-vit-base-patch32 \ |
|
--sample 10000 |
|
|
|
# Run on HF Jobs with GPU (requires HF token for Space deployment) |
|
# Get your token: python -c "from huggingface_hub import get_token; print(get_token())" |
|
hf jobs uv run --flavor t4-small \ |
|
-s HF_TOKEN=your-token-here \ |
|
https://huggingface.co/datasets/uv-scripts/build-atlas/raw/main/atlas-export.py \ |
|
my-dataset \ |
|
--space-name my-atlas \ |
|
--model nomic-ai/nomic-embed-text-v1.5 |
|
|
|
# Use pre-computed embeddings |
|
uv run atlas-export.py \ |
|
my-dataset-with-embeddings \ |
|
--space-name my-viz \ |
|
--no-compute-embeddings \ |
|
--x-column umap_x \ |
|
--y-column umap_y |
|
""" |
|
|
|
import argparse |
|
import logging |
|
import os |
|
import shutil |
|
import subprocess |
|
import sys |
|
import tempfile |
|
import zipfile |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
from huggingface_hub import HfApi, create_repo, get_token, login, upload_folder |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def check_gpu_available() -> bool: |
|
"""Check if GPU is available for computation.""" |
|
try: |
|
import torch |
|
|
|
return torch.cuda.is_available() |
|
except ImportError: |
|
return False |
|
|
|
|
|
def sample_dataset_to_parquet( |
|
dataset_id: str, |
|
sample_size: int, |
|
split: str = "train", |
|
) -> tuple[Path, Path]: |
|
"""Sample dataset and save to local parquet file.""" |
|
from datasets import load_dataset |
|
|
|
logger.info(f"Pre-sampling {sample_size} examples from {dataset_id}...") |
|
|
|
|
|
ds = load_dataset(dataset_id, streaming=True, split=split) |
|
|
|
|
|
ds = ds.shuffle(seed=42) |
|
sampled_ds = ds.take(sample_size) |
|
|
|
|
|
temp_dir = Path(tempfile.mkdtemp(prefix="atlas_data_")) |
|
parquet_path = temp_dir / "data.parquet" |
|
|
|
logger.info(f"Saving sampled data to temporary file...") |
|
sampled_ds.to_parquet(str(parquet_path)) |
|
|
|
file_size = parquet_path.stat().st_size / (1024 * 1024) |
|
logger.info(f"Created {file_size:.1f}MB parquet file with {sample_size} samples") |
|
|
|
return parquet_path, temp_dir |
|
|
|
|
|
def build_atlas_command(args) -> tuple[list, str, Optional[Path]]: |
|
"""Build the embedding-atlas command with all parameters.""" |
|
temp_data_dir = None |
|
|
|
|
|
if args.sample: |
|
parquet_path, temp_data_dir = sample_dataset_to_parquet( |
|
args.dataset_id, args.sample, args.split |
|
) |
|
dataset_input = str(parquet_path) |
|
else: |
|
dataset_input = args.dataset_id |
|
|
|
|
|
|
|
cmd = [ |
|
"uvx", |
|
"--with", |
|
"datasets", |
|
"--with", |
|
"hf-transfer", |
|
"embedding-atlas", |
|
dataset_input, |
|
] |
|
|
|
if args.model: |
|
cmd.extend(["--model", args.model]) |
|
|
|
|
|
text_col = args.text_column or "text" |
|
cmd.extend(["--text", text_col]) |
|
|
|
if args.image_column: |
|
cmd.extend(["--image", args.image_column]) |
|
|
|
if args.split and not args.sample: |
|
cmd.extend(["--split", args.split]) |
|
|
|
|
|
|
|
|
|
|
|
if args.trust_remote_code: |
|
cmd.append("--trust-remote-code") |
|
|
|
if not args.compute_embeddings: |
|
cmd.append("--no-compute-embeddings") |
|
|
|
if args.x_column: |
|
cmd.extend(["--x", args.x_column]) |
|
|
|
if args.y_column: |
|
cmd.extend(["--y", args.y_column]) |
|
|
|
if args.neighbors_column: |
|
cmd.extend(["--neighbors", args.neighbors_column]) |
|
|
|
|
|
export_path = "atlas_export.zip" |
|
cmd.extend(["--export-application", export_path]) |
|
|
|
return cmd, export_path, temp_data_dir |
|
|
|
|
|
def create_space_readme(args) -> str: |
|
"""Generate README.md content for the Space.""" |
|
title = args.space_name.replace("-", " ").title() |
|
|
|
readme = f"""--- |
|
title: {title} |
|
emoji: 🗺️ |
|
colorFrom: blue |
|
colorTo: purple |
|
sdk: static |
|
pinned: false |
|
license: mit |
|
--- |
|
|
|
# 🗺️ {title} |
|
|
|
Interactive embedding visualization of [{args.dataset_id}](https://huggingface.co/datasets/{args.dataset_id}) using [Embedding Atlas](https://github.com/apple/embedding-atlas). |
|
|
|
## Features |
|
|
|
- Interactive embedding visualization |
|
- Real-time search and filtering |
|
- Automatic clustering with labels |
|
- WebGPU-accelerated rendering |
|
""" |
|
|
|
if args.model: |
|
readme += f"\n## Model\n\nEmbeddings generated using: `{args.model}`\n" |
|
|
|
if args.sample: |
|
readme += f"\n## Data\n\nVisualization includes {args.sample:,} samples from the dataset.\n" |
|
|
|
readme += """ |
|
## How to Use |
|
|
|
- **Click and drag** to navigate |
|
- **Scroll** to zoom in/out |
|
- **Click** on points to see details |
|
- **Search** using the search box |
|
- **Filter** using metadata panels |
|
|
|
--- |
|
|
|
*Generated with [UV Scripts Atlas Export](https://huggingface.co/uv-scripts)* |
|
""" |
|
|
|
return readme |
|
|
|
|
|
def extract_and_prepare_static_files(zip_path: str, output_dir: Path) -> None: |
|
"""Extract the exported atlas ZIP and prepare for static deployment.""" |
|
logger.info(f"Extracting {zip_path} to {output_dir}") |
|
|
|
with zipfile.ZipFile(zip_path, "r") as zip_ref: |
|
zip_ref.extractall(output_dir) |
|
|
|
|
|
if not (output_dir / "index.html").exists(): |
|
raise FileNotFoundError("index.html not found in exported atlas") |
|
|
|
logger.info(f"Extracted {len(list(output_dir.iterdir()))} items") |
|
|
|
|
|
def deploy_to_space( |
|
output_dir: Path, |
|
space_name: str, |
|
organization: Optional[str] = None, |
|
private: bool = False, |
|
hf_token: Optional[str] = None, |
|
) -> str: |
|
"""Deploy the static files to a HuggingFace Space.""" |
|
api = HfApi(token=hf_token) |
|
|
|
|
|
if organization: |
|
repo_id = f"{organization}/{space_name}" |
|
else: |
|
|
|
user_info = api.whoami() |
|
username = user_info["name"] |
|
repo_id = f"{username}/{space_name}" |
|
|
|
logger.info(f"Creating Space: {repo_id}") |
|
|
|
|
|
try: |
|
create_repo( |
|
repo_id, |
|
repo_type="space", |
|
space_sdk="static", |
|
private=private, |
|
token=hf_token, |
|
exist_ok=True, |
|
) |
|
logger.info(f"Created new Space: {repo_id}") |
|
except Exception as e: |
|
if "already exists" in str(e): |
|
logger.info(f"Space {repo_id} already exists, updating...") |
|
else: |
|
raise |
|
|
|
|
|
logger.info("Uploading files to Space...") |
|
upload_folder( |
|
folder_path=str(output_dir), repo_id=repo_id, repo_type="space", token=hf_token |
|
) |
|
|
|
space_url = f"https://huggingface.co/spaces/{repo_id}" |
|
logger.info(f"✅ Space deployed successfully: {space_url}") |
|
|
|
return space_url |
|
|
|
|
|
def main(): |
|
|
|
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1") |
|
|
|
parser = argparse.ArgumentParser( |
|
description="Generate and deploy static Embedding Atlas visualizations", |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
epilog=__doc__, |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"dataset_id", |
|
type=str, |
|
help="HuggingFace dataset ID to visualize", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--space-name", |
|
type=str, |
|
required=True, |
|
help="Name for the HuggingFace Space", |
|
) |
|
parser.add_argument( |
|
"--organization", |
|
type=str, |
|
help="HuggingFace organization (default: your username)", |
|
) |
|
parser.add_argument( |
|
"--private", |
|
action="store_true", |
|
help="Make the Space private", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--model", |
|
type=str, |
|
help="Embedding model to use (e.g., sentence-transformers/all-MiniLM-L6-v2)", |
|
) |
|
parser.add_argument( |
|
"--text-column", |
|
type=str, |
|
help="Name of text column (default: auto-detect)", |
|
) |
|
parser.add_argument( |
|
"--image-column", |
|
type=str, |
|
help="Name of image column for image datasets", |
|
) |
|
parser.add_argument( |
|
"--split", |
|
type=str, |
|
default="train", |
|
help="Dataset split to use (default: train)", |
|
) |
|
parser.add_argument( |
|
"--sample", |
|
type=int, |
|
help="Number of samples to visualize (default: all)", |
|
) |
|
parser.add_argument( |
|
"--trust-remote-code", |
|
action="store_true", |
|
help="Trust remote code in dataset/model", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--no-compute-embeddings", |
|
action="store_false", |
|
dest="compute_embeddings", |
|
help="Use pre-computed embeddings from dataset", |
|
) |
|
parser.add_argument( |
|
"--x-column", |
|
type=str, |
|
help="Column with X coordinates (for pre-computed projections)", |
|
) |
|
parser.add_argument( |
|
"--y-column", |
|
type=str, |
|
help="Column with Y coordinates (for pre-computed projections)", |
|
) |
|
parser.add_argument( |
|
"--neighbors-column", |
|
type=str, |
|
help="Column with neighbor indices (for pre-computed)", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--hf-token", |
|
type=str, |
|
help="HuggingFace API token (or set HF_TOKEN env var)", |
|
) |
|
parser.add_argument( |
|
"--local-only", |
|
action="store_true", |
|
help="Only generate locally, don't deploy to Space", |
|
) |
|
parser.add_argument( |
|
"--output-dir", |
|
type=str, |
|
help="Local directory for output (default: temp directory)", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
if check_gpu_available(): |
|
logger.info("🚀 GPU detected - may accelerate embedding generation") |
|
else: |
|
logger.info("💻 Running on CPU - embedding generation may be slower") |
|
|
|
|
|
if not args.local_only: |
|
|
|
hf_token = ( |
|
args.hf_token |
|
or os.environ.get("HF_TOKEN") |
|
or os.environ.get("HUGGING_FACE_HUB_TOKEN") |
|
or get_token() |
|
) |
|
|
|
if hf_token: |
|
login(token=hf_token) |
|
logger.info("✅ Authenticated with Hugging Face") |
|
else: |
|
|
|
is_interactive = sys.stdin.isatty() |
|
|
|
if is_interactive: |
|
logger.warning( |
|
"No HF token provided. You may not be able to push to the Hub." |
|
) |
|
response = input("Continue anyway? (y/n): ") |
|
if response.lower() != "y": |
|
sys.exit(0) |
|
else: |
|
|
|
logger.error( |
|
"No HF token found. Cannot deploy to Space in non-interactive environment." |
|
) |
|
logger.error( |
|
"Please set HF_TOKEN environment variable or use --hf-token argument." |
|
) |
|
logger.error( |
|
"Checked: HF_TOKEN, HUGGING_FACE_HUB_TOKEN, and HF CLI login" |
|
) |
|
sys.exit(1) |
|
|
|
|
|
if args.output_dir: |
|
output_dir = Path(args.output_dir) |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
temp_dir = None |
|
else: |
|
temp_dir = tempfile.mkdtemp(prefix="atlas_export_") |
|
output_dir = Path(temp_dir) |
|
logger.info(f"Using temporary directory: {output_dir}") |
|
|
|
temp_data_dir = None |
|
|
|
try: |
|
|
|
cmd, export_path, temp_data_dir = build_atlas_command(args) |
|
logger.info(f"Running command: {' '.join(cmd)}") |
|
|
|
|
|
result = subprocess.run(cmd, capture_output=True, text=True) |
|
|
|
if result.returncode != 0: |
|
logger.error(f"Atlas export failed with return code {result.returncode}") |
|
logger.error(f"STDOUT: {result.stdout}") |
|
logger.error(f"STDERR: {result.stderr}") |
|
sys.exit(1) |
|
|
|
logger.info("✅ Atlas export completed successfully") |
|
|
|
|
|
extract_and_prepare_static_files(export_path, output_dir) |
|
|
|
|
|
readme_content = create_space_readme(args) |
|
(output_dir / "README.md").write_text(readme_content) |
|
|
|
if args.local_only: |
|
logger.info(f"✅ Static files prepared in: {output_dir}") |
|
logger.info( |
|
"To deploy manually, upload the contents to a HuggingFace Space with sdk: static" |
|
) |
|
else: |
|
|
|
space_url = deploy_to_space( |
|
output_dir, args.space_name, args.organization, args.private, hf_token |
|
) |
|
|
|
logger.info(f"\n🎉 Success! Your atlas is live at: {space_url}") |
|
logger.info(f"The visualization will be available in a few moments.") |
|
|
|
|
|
if Path(export_path).exists(): |
|
os.remove(export_path) |
|
|
|
finally: |
|
|
|
if temp_dir and not args.local_only: |
|
shutil.rmtree(temp_dir) |
|
logger.info("Cleaned up temporary files") |
|
|
|
|
|
if temp_data_dir and temp_data_dir.exists(): |
|
shutil.rmtree(temp_data_dir) |
|
logger.info("Cleaned up sampled data") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
if len(sys.argv) == 1: |
|
print("Example commands:\n") |
|
print("# Basic usage:") |
|
print("uv run atlas-export.py stanfordnlp/imdb --space-name imdb-atlas\n") |
|
print("# With custom model and sampling:") |
|
print( |
|
"uv run atlas-export.py my-dataset --space-name my-viz --model nomic-ai/nomic-embed-text-v1.5 --sample 10000\n" |
|
) |
|
print("# For HF Jobs with GPU (experimental UV support):") |
|
print( |
|
'# First get your token: python -c "from huggingface_hub import get_token; print(get_token())"' |
|
) |
|
print( |
|
"hf jobs uv run --flavor t4-small -s HF_TOKEN=your-token-here https://huggingface.co/datasets/uv-scripts/build-atlas/raw/main/atlas-export.py dataset --space-name viz --model sentence-transformers/all-mpnet-base-v2\n" |
|
) |
|
print("# Local generation only:") |
|
print( |
|
"uv run atlas-export.py dataset --space-name test --local-only --output-dir ./atlas-output" |
|
) |
|
sys.exit(0) |
|
|
|
main() |
|
|