File size: 13,934 Bytes
4ea6260 02b47e6 03d4258 4ea6260 44e63ee 4ea6260 44e63ee 4ea6260 44e63ee 4ea6260 02b47e6 44e63ee 02b47e6 44e63ee 02b47e6 4ea6260 03d4258 4ea6260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "huggingface-hub[hf_transfer]",
# "torch", # For GPU detection
# ]
# ///
"""
Generate static Embedding Atlas visualizations and deploy to HuggingFace Spaces.
This script creates interactive embedding visualizations that run entirely in the browser,
using WebGPU acceleration for smooth performance with millions of points.
Example usage:
# Basic usage (creates Space from dataset)
uv run atlas-export.py \
stanfordnlp/imdb \
--space-name my-imdb-viz
# With custom model and configuration
uv run atlas-export.py \
beans \
--space-name bean-disease-atlas \
--image-column image \
--model openai/clip-vit-base-patch32 \
--sample 10000
# Run on HF Jobs with GPU (requires HF token for Space deployment)
hf jobs uv run \
--flavor t4-small \
https://huggingface.co/datasets/uv-scripts/build-atlas/raw/main/atlas-export.py \
my-dataset \
--space-name my-atlas \
--model nomic-ai/nomic-embed-text-v1.5
# Use pre-computed embeddings
uv run atlas-export.py \
my-dataset-with-embeddings \
--space-name my-viz \
--no-compute-embeddings \
--x-column umap_x \
--y-column umap_y
"""
import argparse
import logging
import os
import shutil
import subprocess
import sys
import tempfile
import zipfile
from pathlib import Path
from typing import Optional
from huggingface_hub import HfApi, create_repo, get_token, login, upload_folder
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_gpu_available() -> bool:
"""Check if GPU is available for computation."""
try:
import torch
return torch.cuda.is_available()
except ImportError:
return False
def build_atlas_command(args) -> list:
"""Build the embedding-atlas command with all parameters."""
# Use uvx to run embedding-atlas with required dependencies
cmd = ["uvx", "--with", "datasets", "embedding-atlas"]
cmd.append(args.dataset_id)
# Add all optional parameters
if args.model:
cmd.extend(["--model", args.model])
# Always specify text column to avoid interactive prompt
text_col = args.text_column or "text" # Default to "text" if not specified
cmd.extend(["--text", text_col])
if args.image_column:
cmd.extend(["--image", args.image_column])
if args.split:
cmd.extend(["--split", args.split])
if args.sample:
cmd.extend(["--sample", str(args.sample)])
if args.trust_remote_code:
cmd.append("--trust-remote-code")
if not args.compute_embeddings:
cmd.append("--no-compute-embeddings")
if args.x_column:
cmd.extend(["--x", args.x_column])
if args.y_column:
cmd.extend(["--y", args.y_column])
if args.neighbors_column:
cmd.extend(["--neighbors", args.neighbors_column])
# Add export flag with output path
export_path = "atlas_export.zip"
cmd.extend(["--export-application", export_path])
return cmd, export_path
def create_space_readme(args) -> str:
"""Generate README.md content for the Space."""
title = args.space_name.replace("-", " ").title()
readme = f"""---
title: {title}
emoji: ๐บ๏ธ
colorFrom: blue
colorTo: purple
sdk: static
pinned: false
license: mit
---
# ๐บ๏ธ {title}
Interactive embedding visualization of [{args.dataset_id}](https://huggingface.co/datasets/{args.dataset_id}) using [Embedding Atlas](https://github.com/apple/embedding-atlas).
## Features
- Interactive embedding visualization
- Real-time search and filtering
- Automatic clustering with labels
- WebGPU-accelerated rendering
"""
if args.model:
readme += f"\n## Model\n\nEmbeddings generated using: `{args.model}`\n"
if args.sample:
readme += f"\n## Data\n\nVisualization includes {args.sample:,} samples from the dataset.\n"
readme += """
## How to Use
- **Click and drag** to navigate
- **Scroll** to zoom in/out
- **Click** on points to see details
- **Search** using the search box
- **Filter** using metadata panels
---
*Generated with [UV Scripts Atlas Export](https://huggingface.co/uv-scripts)*
"""
return readme
def extract_and_prepare_static_files(zip_path: str, output_dir: Path) -> None:
"""Extract the exported atlas ZIP and prepare for static deployment."""
logger.info(f"Extracting {zip_path} to {output_dir}")
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(output_dir)
# The ZIP should contain index.html and associated files
if not (output_dir / "index.html").exists():
raise FileNotFoundError("index.html not found in exported atlas")
logger.info(f"Extracted {len(list(output_dir.iterdir()))} items")
def deploy_to_space(
output_dir: Path,
space_name: str,
organization: Optional[str] = None,
private: bool = False,
hf_token: Optional[str] = None
) -> str:
"""Deploy the static files to a HuggingFace Space."""
api = HfApi(token=hf_token)
# Construct full repo ID
if organization:
repo_id = f"{organization}/{space_name}"
else:
# Get username from API
user_info = api.whoami()
username = user_info["name"]
repo_id = f"{username}/{space_name}"
logger.info(f"Creating Space: {repo_id}")
# Create the Space repository
try:
create_repo(
repo_id,
repo_type="space",
space_sdk="static",
private=private,
token=hf_token
)
logger.info(f"Created new Space: {repo_id}")
except Exception as e:
if "already exists" in str(e):
logger.info(f"Space {repo_id} already exists, updating...")
else:
raise
# Upload all files
logger.info("Uploading files to Space...")
upload_folder(
folder_path=str(output_dir),
repo_id=repo_id,
repo_type="space",
token=hf_token
)
space_url = f"https://huggingface.co/spaces/{repo_id}"
logger.info(f"โ
Space deployed successfully: {space_url}")
return space_url
def main():
# Enable HF Transfer for faster downloads if available
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
parser = argparse.ArgumentParser(
description="Generate and deploy static Embedding Atlas visualizations",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
# Required arguments
parser.add_argument(
"dataset_id",
type=str,
help="HuggingFace dataset ID to visualize",
)
# Space configuration
parser.add_argument(
"--space-name",
type=str,
required=True,
help="Name for the HuggingFace Space",
)
parser.add_argument(
"--organization",
type=str,
help="HuggingFace organization (default: your username)",
)
parser.add_argument(
"--private",
action="store_true",
help="Make the Space private",
)
# Atlas configuration
parser.add_argument(
"--model",
type=str,
help="Embedding model to use (e.g., sentence-transformers/all-MiniLM-L6-v2)",
)
parser.add_argument(
"--text-column",
type=str,
help="Name of text column (default: auto-detect)",
)
parser.add_argument(
"--image-column",
type=str,
help="Name of image column for image datasets",
)
parser.add_argument(
"--split",
type=str,
default="train",
help="Dataset split to use (default: train)",
)
parser.add_argument(
"--sample",
type=int,
help="Number of samples to visualize (default: all)",
)
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Trust remote code in dataset/model",
)
# Pre-computed embeddings
parser.add_argument(
"--no-compute-embeddings",
action="store_false",
dest="compute_embeddings",
help="Use pre-computed embeddings from dataset",
)
parser.add_argument(
"--x-column",
type=str,
help="Column with X coordinates (for pre-computed projections)",
)
parser.add_argument(
"--y-column",
type=str,
help="Column with Y coordinates (for pre-computed projections)",
)
parser.add_argument(
"--neighbors-column",
type=str,
help="Column with neighbor indices (for pre-computed)",
)
# Additional options
parser.add_argument(
"--hf-token",
type=str,
help="HuggingFace API token (or set HF_TOKEN env var)",
)
parser.add_argument(
"--local-only",
action="store_true",
help="Only generate locally, don't deploy to Space",
)
parser.add_argument(
"--output-dir",
type=str,
help="Local directory for output (default: temp directory)",
)
args = parser.parse_args()
# Check GPU availability
if check_gpu_available():
logger.info("๐ GPU detected - may accelerate embedding generation")
else:
logger.info("๐ป Running on CPU - embedding generation may be slower")
# Login to HuggingFace if needed
if not args.local_only:
# Try to get token from various sources
hf_token = (
args.hf_token
or os.environ.get("HF_TOKEN")
or os.environ.get("HUGGING_FACE_HUB_TOKEN")
or get_token() # This will check HF CLI login
)
if hf_token:
login(token=hf_token)
logger.info("โ
Authenticated with Hugging Face")
else:
# Check if running in non-interactive environment (HF Jobs, CI, etc.)
is_interactive = sys.stdin.isatty()
if is_interactive:
logger.warning("No HF token provided. You may not be able to push to the Hub.")
response = input("Continue anyway? (y/n): ")
if response.lower() != 'y':
sys.exit(0)
else:
# In non-interactive environments, fail immediately if no token
logger.error("No HF token found. Cannot deploy to Space in non-interactive environment.")
logger.error("Please set HF_TOKEN environment variable or use --hf-token argument.")
logger.error("Checked: HF_TOKEN, HUGGING_FACE_HUB_TOKEN, and HF CLI login")
sys.exit(1)
# Set up output directory
if args.output_dir:
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
temp_dir = None
else:
temp_dir = tempfile.mkdtemp(prefix="atlas_export_")
output_dir = Path(temp_dir)
logger.info(f"Using temporary directory: {output_dir}")
try:
# Build and run embedding-atlas command
cmd, export_path = build_atlas_command(args)
logger.info(f"Running command: {' '.join(cmd)}")
# Run the command
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode != 0:
logger.error(f"Atlas export failed with return code {result.returncode}")
logger.error(f"STDOUT: {result.stdout}")
logger.error(f"STDERR: {result.stderr}")
sys.exit(1)
logger.info("โ
Atlas export completed successfully")
# Extract the exported files
extract_and_prepare_static_files(export_path, output_dir)
# Create README for the Space
readme_content = create_space_readme(args)
(output_dir / "README.md").write_text(readme_content)
if args.local_only:
logger.info(f"โ
Static files prepared in: {output_dir}")
logger.info("To deploy manually, upload the contents to a HuggingFace Space with sdk: static")
else:
# Deploy to HuggingFace Space
space_url = deploy_to_space(
output_dir,
args.space_name,
args.organization,
args.private,
hf_token
)
logger.info(f"\n๐ Success! Your atlas is live at: {space_url}")
logger.info(f"The visualization will be available in a few moments.")
# Clean up the ZIP file
if Path(export_path).exists():
os.remove(export_path)
finally:
# Clean up temp directory if used
if temp_dir and not args.local_only:
shutil.rmtree(temp_dir)
logger.info("Cleaned up temporary files")
if __name__ == "__main__":
# Show example commands if no args provided
if len(sys.argv) == 1:
print("Example commands:\n")
print("# Basic usage:")
print("uv run atlas-export.py stanfordnlp/imdb --space-name imdb-atlas\n")
print("# With custom model and sampling:")
print("uv run atlas-export.py my-dataset --space-name my-viz --model nomic-ai/nomic-embed-text-v1.5 --sample 10000\n")
print("# For HF Jobs with GPU (experimental UV support):")
print("hf jobs uv run --flavor t4-small https://huggingface.co/datasets/uv-scripts/build-atlas/raw/main/atlas-export.py dataset --space-name viz --model sentence-transformers/all-mpnet-base-v2\n")
print("# Local generation only:")
print("uv run atlas-export.py dataset --space-name test --local-only --output-dir ./atlas-output")
sys.exit(0)
main() |