Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
4195745
·
1 Parent(s): 98340bb

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,211 +0,0 @@
1
- ---
2
- pretty_name: DROP
3
- annotations_creators:
4
- - crowdsourced
5
- language_creators:
6
- - crowdsourced
7
- language:
8
- - en
9
- license:
10
- - cc-by-sa-4.0
11
- multilinguality:
12
- - monolingual
13
- size_categories:
14
- - 10K<n<100K
15
- source_datasets:
16
- - original
17
- task_categories:
18
- - question-answering
19
- - text2text-generation
20
- task_ids:
21
- - extractive-qa
22
- - abstractive-qa
23
- paperswithcode_id: drop
24
- dataset_info:
25
- features:
26
- - name: section_id
27
- dtype: string
28
- - name: query_id
29
- dtype: string
30
- - name: passage
31
- dtype: string
32
- - name: question
33
- dtype: string
34
- - name: answers_spans
35
- sequence:
36
- - name: spans
37
- dtype: string
38
- - name: types
39
- dtype: string
40
- splits:
41
- - name: train
42
- num_bytes: 105572762
43
- num_examples: 77400
44
- - name: validation
45
- num_bytes: 11737787
46
- num_examples: 9535
47
- download_size: 8308692
48
- dataset_size: 117310549
49
- ---
50
-
51
- # Dataset Card for "drop"
52
-
53
- ## Table of Contents
54
- - [Dataset Description](#dataset-description)
55
- - [Dataset Summary](#dataset-summary)
56
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
57
- - [Languages](#languages)
58
- - [Dataset Structure](#dataset-structure)
59
- - [Data Instances](#data-instances)
60
- - [Data Fields](#data-fields)
61
- - [Data Splits](#data-splits)
62
- - [Dataset Creation](#dataset-creation)
63
- - [Curation Rationale](#curation-rationale)
64
- - [Source Data](#source-data)
65
- - [Annotations](#annotations)
66
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
67
- - [Considerations for Using the Data](#considerations-for-using-the-data)
68
- - [Social Impact of Dataset](#social-impact-of-dataset)
69
- - [Discussion of Biases](#discussion-of-biases)
70
- - [Other Known Limitations](#other-known-limitations)
71
- - [Additional Information](#additional-information)
72
- - [Dataset Curators](#dataset-curators)
73
- - [Licensing Information](#licensing-information)
74
- - [Citation Information](#citation-information)
75
- - [Contributions](#contributions)
76
-
77
- ## Dataset Description
78
-
79
- - **Homepage:** [https://allennlp.org/drop](https://allennlp.org/drop)
80
- - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
81
- - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
82
- - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
83
- - **Size of downloaded dataset files:** 7.92 MB
84
- - **Size of the generated dataset:** 105.77 MB
85
- - **Total amount of disk used:** 113.69 MB
86
-
87
- ### Dataset Summary
88
-
89
- DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.
90
- . DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a
91
- question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or
92
- sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was
93
- necessary for prior datasets.
94
-
95
- ### Supported Tasks and Leaderboards
96
-
97
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
98
-
99
- ### Languages
100
-
101
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
102
-
103
- ## Dataset Structure
104
-
105
- ### Data Instances
106
-
107
- #### default
108
-
109
- - **Size of downloaded dataset files:** 7.92 MB
110
- - **Size of the generated dataset:** 105.77 MB
111
- - **Total amount of disk used:** 113.69 MB
112
-
113
- An example of 'validation' looks as follows.
114
- ```
115
- This example was too long and was cropped:
116
-
117
- {
118
- "answers_spans": {
119
- "spans": ["Chaz Schilens"]
120
- },
121
- "passage": "\" Hoping to rebound from their loss to the Patriots, the Raiders stayed at home for a Week 16 duel with the Houston Texans. Oak...",
122
- "question": "Who scored the first touchdown of the game?"
123
- }
124
- ```
125
-
126
- ### Data Fields
127
-
128
- The data fields are the same among all splits.
129
-
130
- #### default
131
- - `passage`: a `string` feature.
132
- - `question`: a `string` feature.
133
- - `answers_spans`: a dictionary feature containing:
134
- - `spans`: a `string` feature.
135
-
136
- ### Data Splits
137
-
138
- | name |train|validation|
139
- |-------|----:|---------:|
140
- |default|77409| 9536|
141
-
142
- ## Dataset Creation
143
-
144
- ### Curation Rationale
145
-
146
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
147
-
148
- ### Source Data
149
-
150
- #### Initial Data Collection and Normalization
151
-
152
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
153
-
154
- #### Who are the source language producers?
155
-
156
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
157
-
158
- ### Annotations
159
-
160
- #### Annotation process
161
-
162
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
163
-
164
- #### Who are the annotators?
165
-
166
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
167
-
168
- ### Personal and Sensitive Information
169
-
170
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
171
-
172
- ## Considerations for Using the Data
173
-
174
- ### Social Impact of Dataset
175
-
176
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
177
-
178
- ### Discussion of Biases
179
-
180
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
181
-
182
- ### Other Known Limitations
183
-
184
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
185
-
186
- ## Additional Information
187
-
188
- ### Dataset Curators
189
-
190
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
191
-
192
- ### Licensing Information
193
-
194
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
195
-
196
- ### Citation Information
197
-
198
- ```
199
- @inproceedings{Dua2019DROP,
200
- author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
201
- title={ {DROP}: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
202
- booktitle={Proc. of NAACL},
203
- year={2019}
204
- }
205
-
206
- ```
207
-
208
-
209
- ### Contributions
210
-
211
- Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@lewtun](https://github.com/lewtun) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.\n. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a\nquestion, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or\n sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was\n necessary for prior datasets.\n", "citation": "@inproceedings{Dua2019DROP,\n author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},\n title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},\n booktitle={Proc. of NAACL},\n year={2019}\n}\n", "homepage": "https://allennlp.org/drop", "license": "", "features": {"section_id": {"dtype": "string", "id": null, "_type": "Value"}, "query_id": {"dtype": "string", "id": null, "_type": "Value"}, "passage": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers_spans": {"feature": {"spans": {"dtype": "string", "id": null, "_type": "Value"}, "types": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "drop", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 105572762, "num_examples": 77400, "dataset_name": "drop"}, "validation": {"name": "validation", "num_bytes": 11737787, "num_examples": 9535, "dataset_name": "drop"}}, "download_checksums": {"https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip": {"num_bytes": 8308692, "checksum": "39d2278a29fd729de301b111a45f434c24834f40df8f4ff116d864589e3249d6"}}, "download_size": 8308692, "post_processing_size": null, "dataset_size": 117310549, "size_in_bytes": 125619241}}
 
 
default/drop-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3833353791d3afcab4449a13cd3d168b8a5d3322d164ab0be7a34286053e3bd3
3
+ size 10333126
default/drop-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7bdb803de6182a38031316ce0725649cb20a3b457d5cf47444d19aa5674644b
3
+ size 1205259
drop.py DELETED
@@ -1,202 +0,0 @@
1
- """TODO(drop): Add a description here."""
2
-
3
-
4
- import json
5
- import os
6
-
7
- import datasets
8
-
9
-
10
- _CITATION = """\
11
- @inproceedings{Dua2019DROP,
12
- author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
13
- title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
14
- booktitle={Proc. of NAACL},
15
- year={2019}
16
- }
17
- """
18
-
19
- _DESCRIPTION = """\
20
- DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.
21
- . DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a
22
- question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or
23
- sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was
24
- necessary for prior datasets.
25
- """
26
- _URL = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"
27
-
28
-
29
- class AnswerParsingError(Exception):
30
- pass
31
-
32
-
33
- class DropDateObject:
34
- """
35
- Custom parser for date answers in DROP.
36
- A date answer is a dict <date> with at least one of day|month|year.
37
-
38
- Example: date == {
39
- 'day': '9',
40
- 'month': 'March',
41
- 'year': '2021'
42
- }
43
-
44
- This dict is parsed and flattend to '{day} {month} {year}', not including
45
- blank values.
46
-
47
- Example: str(DropDateObject(date)) == '9 March 2021'
48
- """
49
-
50
- def __init__(self, dict_date):
51
- self.year = dict_date.get("year", "")
52
- self.month = dict_date.get("month", "")
53
- self.day = dict_date.get("day", "")
54
-
55
- def __iter__(self):
56
- yield from [self.day, self.month, self.year]
57
-
58
- def __bool__(self):
59
- return any(self)
60
-
61
- def __repr__(self):
62
- return " ".join(self).strip()
63
-
64
-
65
- class Drop(datasets.GeneratorBasedBuilder):
66
- """TODO(drop): Short description of my dataset."""
67
-
68
- # TODO(drop): Set up version.
69
- VERSION = datasets.Version("0.1.0")
70
-
71
- def _info(self):
72
- # TODO(drop): Specifies the datasets.DatasetInfo object
73
- return datasets.DatasetInfo(
74
- # This is the description that will appear on the datasets page.
75
- description=_DESCRIPTION,
76
- # datasets.features.FeatureConnectors
77
- features=datasets.Features(
78
- {
79
- "section_id": datasets.Value("string"),
80
- "query_id": datasets.Value("string"),
81
- "passage": datasets.Value("string"),
82
- "question": datasets.Value("string"),
83
- "answers_spans": datasets.features.Sequence(
84
- {"spans": datasets.Value("string"), "types": datasets.Value("string")}
85
- )
86
- # These are the features of your dataset like images, labels ...
87
- }
88
- ),
89
- # If there's a common (input, target) tuple from the features,
90
- # specify them here. They'll be used if as_supervised=True in
91
- # builder.as_dataset.
92
- supervised_keys=None,
93
- # Homepage of the dataset for documentation
94
- homepage="https://allennlp.org/drop",
95
- citation=_CITATION,
96
- )
97
-
98
- def _split_generators(self, dl_manager):
99
- """Returns SplitGenerators."""
100
- # TODO(drop): Downloads the data and defines the splits
101
- # dl_manager is a datasets.download.DownloadManager that can be used to
102
- # download and extract URLs
103
- dl_dir = dl_manager.download_and_extract(_URL)
104
- data_dir = os.path.join(dl_dir, "drop_dataset")
105
- return [
106
- datasets.SplitGenerator(
107
- name=datasets.Split.TRAIN,
108
- # These kwargs will be passed to _generate_examples
109
- gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json"), "split": "train"},
110
- ),
111
- datasets.SplitGenerator(
112
- name=datasets.Split.VALIDATION,
113
- # These kwargs will be passed to _generate_examples
114
- gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json"), "split": "validation"},
115
- ),
116
- ]
117
-
118
- def _generate_examples(self, filepath, split):
119
- """Yields examples."""
120
- # TODO(drop): Yields (key, example) tuples from the dataset
121
- with open(filepath, mode="r", encoding="utf-8") as f:
122
- data = json.load(f)
123
- id_ = 0
124
- for i, (section_id, section) in enumerate(data.items()):
125
- for j, qa in enumerate(section["qa_pairs"]):
126
-
127
- example = {
128
- "section_id": section_id,
129
- "query_id": qa["query_id"],
130
- "passage": section["passage"],
131
- "question": qa["question"],
132
- }
133
-
134
- if split == "train":
135
- answers = [qa["answer"]]
136
- else:
137
- answers = qa["validated_answers"]
138
-
139
- try:
140
- example["answers_spans"] = self.build_answers(answers)
141
- yield id_, example
142
- id_ += 1
143
- except AnswerParsingError:
144
- # This is expected for 9 examples of train
145
- # and 1 of validation.
146
- continue
147
-
148
- @staticmethod
149
- def _raise(message):
150
- """
151
- Raise a custom AnswerParsingError, to be sure to only catch our own
152
- errors. Messages are irrelavant for this script, but are written to
153
- ease understanding the code.
154
- """
155
- raise AnswerParsingError(message)
156
-
157
- def build_answers(self, answers):
158
-
159
- returned_answers = {
160
- "spans": list(),
161
- "types": list(),
162
- }
163
- for answer in answers:
164
- date = DropDateObject(answer["date"])
165
-
166
- if answer["number"] != "":
167
- # sanity checks
168
- if date:
169
- self._raise("This answer is both number and date!")
170
- if len(answer["spans"]):
171
- self._raise("This answer is both number and text!")
172
-
173
- returned_answers["spans"].append(answer["number"])
174
- returned_answers["types"].append("number")
175
-
176
- elif date:
177
- # sanity check
178
- if len(answer["spans"]):
179
- self._raise("This answer is both date and text!")
180
-
181
- returned_answers["spans"].append(str(date))
182
- returned_answers["types"].append("date")
183
-
184
- # won't triger if len(answer['spans']) == 0
185
- for span in answer["spans"]:
186
- # sanity checks
187
- if answer["number"] != "":
188
- self._raise("This answer is both text and number!")
189
- if date:
190
- self._raise("This answer is both text and date!")
191
-
192
- returned_answers["spans"].append(span)
193
- returned_answers["types"].append("span")
194
-
195
- # sanity check
196
- _len = len(returned_answers["spans"])
197
- if not _len:
198
- self._raise("Empty answer.")
199
- if any(len(l) != _len for _, l in returned_answers.items()):
200
- self._raise("Something went wrong while parsing answer values/types")
201
-
202
- return returned_answers