Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Commit
·
0316ec0
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- drop.py +96 -0
- dummy/0.1.0/dummy_data.zip +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"default": {"description": "DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.\n. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a \nquestion, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or\n sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was \n necessary for prior datasets.\n", "citation": "@inproceedings{Dua2019DROP,\n author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},\n title={ {DROP}: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},\n booktitle={Proc. of NAACL},\n year={2019}\n}\n", "homepage": "https://allennlp.org/drop", "license": "", "features": {"passage": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers_spans": {"feature": {"spans": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "drop", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 100119741, "num_examples": 77409, "dataset_name": "drop"}, "validation": {"name": "validation", "num_bytes": 10788180, "num_examples": 9536, "dataset_name": "drop"}}, "download_checksums": {"https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip": {"num_bytes": 8308692, "checksum": "39d2278a29fd729de301b111a45f434c24834f40df8f4ff116d864589e3249d6"}}, "download_size": 8308692, "dataset_size": 110907921, "size_in_bytes": 119216613}}
|
drop.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""TODO(drop): Add a description here."""
|
| 2 |
+
|
| 3 |
+
from __future__ import absolute_import, division, print_function
|
| 4 |
+
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
import datasets
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# TODO(drop): BibTeX citation
|
| 12 |
+
_CITATION = """\
|
| 13 |
+
@inproceedings{Dua2019DROP,
|
| 14 |
+
author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
|
| 15 |
+
title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
|
| 16 |
+
booktitle={Proc. of NAACL},
|
| 17 |
+
year={2019}
|
| 18 |
+
}
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
# TODO(drop):
|
| 22 |
+
_DESCRIPTION = """\
|
| 23 |
+
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.
|
| 24 |
+
. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a
|
| 25 |
+
question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or
|
| 26 |
+
sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was
|
| 27 |
+
necessary for prior datasets.
|
| 28 |
+
"""
|
| 29 |
+
_URl = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Drop(datasets.GeneratorBasedBuilder):
|
| 33 |
+
"""TODO(drop): Short description of my dataset."""
|
| 34 |
+
|
| 35 |
+
# TODO(drop): Set up version.
|
| 36 |
+
VERSION = datasets.Version("0.1.0")
|
| 37 |
+
|
| 38 |
+
def _info(self):
|
| 39 |
+
# TODO(drop): Specifies the datasets.DatasetInfo object
|
| 40 |
+
return datasets.DatasetInfo(
|
| 41 |
+
# This is the description that will appear on the datasets page.
|
| 42 |
+
description=_DESCRIPTION,
|
| 43 |
+
# datasets.features.FeatureConnectors
|
| 44 |
+
features=datasets.Features(
|
| 45 |
+
{
|
| 46 |
+
"passage": datasets.Value("string"),
|
| 47 |
+
"question": datasets.Value("string"),
|
| 48 |
+
"answers_spans": datasets.features.Sequence({"spans": datasets.Value("string")})
|
| 49 |
+
# These are the features of your dataset like images, labels ...
|
| 50 |
+
}
|
| 51 |
+
),
|
| 52 |
+
# If there's a common (input, target) tuple from the features,
|
| 53 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 54 |
+
# builder.as_dataset.
|
| 55 |
+
supervised_keys=None,
|
| 56 |
+
# Homepage of the dataset for documentation
|
| 57 |
+
homepage="https://allennlp.org/drop",
|
| 58 |
+
citation=_CITATION,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
def _split_generators(self, dl_manager):
|
| 62 |
+
"""Returns SplitGenerators."""
|
| 63 |
+
# TODO(drop): Downloads the data and defines the splits
|
| 64 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 65 |
+
# download and extract URLs
|
| 66 |
+
dl_dir = dl_manager.download_and_extract(_URl)
|
| 67 |
+
data_dir = os.path.join(dl_dir, "drop_dataset")
|
| 68 |
+
return [
|
| 69 |
+
datasets.SplitGenerator(
|
| 70 |
+
name=datasets.Split.TRAIN,
|
| 71 |
+
# These kwargs will be passed to _generate_examples
|
| 72 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json")},
|
| 73 |
+
),
|
| 74 |
+
datasets.SplitGenerator(
|
| 75 |
+
name=datasets.Split.VALIDATION,
|
| 76 |
+
# These kwargs will be passed to _generate_examples
|
| 77 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json")},
|
| 78 |
+
),
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
def _generate_examples(self, filepath):
|
| 82 |
+
"""Yields examples."""
|
| 83 |
+
# TODO(drop): Yields (key, example) tuples from the dataset
|
| 84 |
+
with open(filepath, encoding="utf-8") as f:
|
| 85 |
+
data = json.load(f)
|
| 86 |
+
for i, key in enumerate(data):
|
| 87 |
+
example = data[key]
|
| 88 |
+
qa_pairs = example["qa_pairs"]
|
| 89 |
+
for j, qa in enumerate(qa_pairs):
|
| 90 |
+
question = qa["question"]
|
| 91 |
+
answers = qa["answer"]["spans"]
|
| 92 |
+
yield str(i) + "_" + str(j), {
|
| 93 |
+
"passage": example["passage"],
|
| 94 |
+
"question": question,
|
| 95 |
+
"answers_spans": {"spans": answers},
|
| 96 |
+
}
|
dummy/0.1.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c03cd6d5d77bd4d2046c61dbe046a4a580a69a516deafaa657f0cf8b07b933a1
|
| 3 |
+
size 2510
|