Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- text-classification
|
5 |
+
tags:
|
6 |
+
- protein
|
7 |
+
- downstream task
|
8 |
+
---
|
9 |
+
|
10 |
+
# PETA_LGK_Sol Dataset
|
11 |
+
|
12 |
+
- Description: Solubility mutation dataset.
|
13 |
+
- Number of labels: 1
|
14 |
+
- Problem Type: regression
|
15 |
+
- Columns:
|
16 |
+
- aa_seq: protein amino acid sequence
|
17 |
+
|
18 |
+
# Github
|
19 |
+
|
20 |
+
PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications
|
21 |
+
|
22 |
+
https://github.com/ginnm/ProteinPretraining
|
23 |
+
|
24 |
+
# Citation
|
25 |
+
Please cite our work if you use our dataset.
|
26 |
+
```
|
27 |
+
@article{tan2024peta,
|
28 |
+
title={PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications},
|
29 |
+
author={Tan, Yang and Li, Mingchen and Zhou, Ziyi and Tan, Pan and Yu, Huiqun and Fan, Guisheng and Hong, Liang},
|
30 |
+
journal={Journal of Cheminformatics},
|
31 |
+
volume={16},
|
32 |
+
number={1},
|
33 |
+
pages={92},
|
34 |
+
year={2024},
|
35 |
+
publisher={Springer}
|
36 |
+
}
|
37 |
+
```
|