File size: 4,275 Bytes
890f5d1
 
 
 
 
 
 
 
 
 
3c4f1c0
890f5d1
 
 
 
 
 
3c4f1c0
 
 
 
 
890f5d1
 
 
3c4f1c0
 
 
 
 
 
 
 
 
 
4e4ef24
 
 
 
3c4f1c0
 
 
17ae3cd
3c4f1c0
 
1b951fc
3c4f1c0
 
1b951fc
3c4f1c0
 
890f5d1
678fb6c
890f5d1
678fb6c
bd711b7
 
 
4e4ef24
 
890f5d1
 
403d4d2
ed4695c
890f5d1
ca432ce
ed4695c
890f5d1
ca432ce
ed4695c
890f5d1
3c4f1c0
 
a7950c8
3c4f1c0
a7950c8
3c4f1c0
 
 
a7950c8
 
 
 
 
3c4f1c0
 
 
625b3f5
3c4f1c0
 
625b3f5
3c4f1c0
 
625b3f5
3c4f1c0
 
890f5d1
 
 
 
 
 
 
3c4f1c0
 
 
a7950c8
3c4f1c0
a7950c8
3c4f1c0
a7950c8
3c4f1c0
 
 
 
 
 
 
 
890f5d1
 
c499504
 
 
048c185
c499504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fc270a
c499504
 
 
 
1fc270a
 
 
 
 
 
 
 
 
 
 
c499504
 
 
 
 
890f5d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
annotations_creators:
- Duygu Altinok
language:
- tr
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: SentiTurca (Sentiment Analysis Datasets for Turkish language)
config_names:
- e-commerce
- hate
- movies
tags:
- sentiment
dataset_info:
- config_name: hate
  features:
  - name: baslik
    dtype: string
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: offensive
          1: hate
          2: neutral
          3: civilized
  splits:
  - name: train
    num_bytes: 47357639
    num_examples: 42175
  - name: validation
    num_bytes: 5400927
    num_examples: 5000
  - name: test
    num_bytes: 5323545
    num_examples: 5000
  download_size: 58918801
- config_name: movies
  features:
  - name: text
    dtype: string
  - name: label
    dtype: 
      class_label:
        names:
          0: negative
          1: positive
  splits:
  - name: train
    num_bytes: 46979645
    num_examples: 60411
  - name: validation
    num_bytes: 733500
    num_examples: 8905
  - name: test
    num_bytes: 742661
    num_examples: 8934
  download_size: 58918801
- config_name: e-commerce
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: 1_star
          1: 2_star
          2: 3_star
          3: 4_star
          4: 5_star
  splits:
  - name: train
    num_bytes: 12844466
    num_examples: 73920
  - name: validation
    num_bytes: 4811620
    num_examples: 15000
  - name: test
    num_bytes: 5260694
    num_examples: 15000
configs:
- config_name: movies
  data_files:
  - split: train
    path: movies/train-*
  - split: validation
    path: movies/validation-*
  - split: test
    path: movies/test-*
- config_name: e-commerce
  data_files:
  - split: train
    path: e-commerce/train*
  - split: validation
    path: e-commerce/valid*
  - split: test
    path: e-commerce/test*
- config_name: hate
  data_files:
  - split: train
    path: hate/train-*
  - split: validation
    path: hate/validation-*
  - split: test
    path: hate/test-*
---

# SentiTurca - A Sentiment Analysis Benchmark for Turkish


<img src="https://raw.githubusercontent.com/turkish-nlp-suite/.github/main/profile/sentiturcalogo.png"  width="30%" height="30%">



# Dataset Card for SentiTurca

SentiTurca is a sentiment analysis benchmarking dataset including movie reviews, hate speech and e-commerce reviews classification.  

### Datasets
**e-commerce**: The e-commerce reviews are scraped from e-commerce websites Trendyol.com and Hepsiburada.com, including review for many product types such as cloths, toys, books, electronics and more.  
E-commerce reviews has their [stand alone HF repo](https://huggingface.co/datasets/turkish-nlp-suite/MusteriYorumlari) as well.

**movies** The movie reviews are scraped from two movie review websites, Sinefil.com and Beyazperde.com. Here, we used 2 labels but for a total challenge of 10 label classification can be found under this dataset's [stand alone HF repo](https://huggingface.co/datasets/turkish-nlp-suite/BuyukSinema).
This dataset is also a part of [TrGLUE benchmark](https://huggingface.co/datasets/turkish-nlp-suite/TrGLUE) under the task name **sst2**.

**hate** This dataset is the [Turkish Hate Map](https://huggingface.co/datasets/turkish-nlp-suite/TurkishHateMap), scraped from Eksisozluk.com and including 4 labels: offense, hate, neutral and civilized.


### Dataset statistics

Here are the dataset sizes and number of labels:


| Subset | size | num labels |
|---|---|---|
| e-commerce  | 103K | 5 |
| movies  | 78K  | 2|
| hate |  52K| 4 |


### Benchmarking

We benchmarked BERTurk on all of our datasets. 
All benchmarking scripts can be found under the dedicated [SentiTurca Github repo](https://github.com/turkish-nlp-suite/SentiTurca).

| Subset | metrics | success |
|---|---|---|
| movies  | Matthews corr. | 0.67 |
| e-commerce  | acc./F1 | 0.66/0.64 |
| hate | acc./F1 | 0.61/0.58 | 

As one sees, hate dataset is quite challenging. For a  full critique of the benchmark please visit our [research paper]().


### Citation

Coming soon!