Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Turkish
Size:
100K - 1M
Tags:
sentiment
License:
File size: 4,275 Bytes
890f5d1 3c4f1c0 890f5d1 3c4f1c0 890f5d1 3c4f1c0 4e4ef24 3c4f1c0 17ae3cd 3c4f1c0 1b951fc 3c4f1c0 1b951fc 3c4f1c0 890f5d1 678fb6c 890f5d1 678fb6c bd711b7 4e4ef24 890f5d1 403d4d2 ed4695c 890f5d1 ca432ce ed4695c 890f5d1 ca432ce ed4695c 890f5d1 3c4f1c0 a7950c8 3c4f1c0 a7950c8 3c4f1c0 a7950c8 3c4f1c0 625b3f5 3c4f1c0 625b3f5 3c4f1c0 625b3f5 3c4f1c0 890f5d1 3c4f1c0 a7950c8 3c4f1c0 a7950c8 3c4f1c0 a7950c8 3c4f1c0 890f5d1 c499504 048c185 c499504 1fc270a c499504 1fc270a c499504 890f5d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
annotations_creators:
- Duygu Altinok
language:
- tr
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: SentiTurca (Sentiment Analysis Datasets for Turkish language)
config_names:
- e-commerce
- hate
- movies
tags:
- sentiment
dataset_info:
- config_name: hate
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: train
num_bytes: 47357639
num_examples: 42175
- name: validation
num_bytes: 5400927
num_examples: 5000
- name: test
num_bytes: 5323545
num_examples: 5000
download_size: 58918801
- config_name: movies
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: negative
1: positive
splits:
- name: train
num_bytes: 46979645
num_examples: 60411
- name: validation
num_bytes: 733500
num_examples: 8905
- name: test
num_bytes: 742661
num_examples: 8934
download_size: 58918801
- config_name: e-commerce
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: 1_star
1: 2_star
2: 3_star
3: 4_star
4: 5_star
splits:
- name: train
num_bytes: 12844466
num_examples: 73920
- name: validation
num_bytes: 4811620
num_examples: 15000
- name: test
num_bytes: 5260694
num_examples: 15000
configs:
- config_name: movies
data_files:
- split: train
path: movies/train-*
- split: validation
path: movies/validation-*
- split: test
path: movies/test-*
- config_name: e-commerce
data_files:
- split: train
path: e-commerce/train*
- split: validation
path: e-commerce/valid*
- split: test
path: e-commerce/test*
- config_name: hate
data_files:
- split: train
path: hate/train-*
- split: validation
path: hate/validation-*
- split: test
path: hate/test-*
---
# SentiTurca - A Sentiment Analysis Benchmark for Turkish
<img src="https://raw.githubusercontent.com/turkish-nlp-suite/.github/main/profile/sentiturcalogo.png" width="30%" height="30%">
# Dataset Card for SentiTurca
SentiTurca is a sentiment analysis benchmarking dataset including movie reviews, hate speech and e-commerce reviews classification.
### Datasets
**e-commerce**: The e-commerce reviews are scraped from e-commerce websites Trendyol.com and Hepsiburada.com, including review for many product types such as cloths, toys, books, electronics and more.
E-commerce reviews has their [stand alone HF repo](https://huggingface.co/datasets/turkish-nlp-suite/MusteriYorumlari) as well.
**movies** The movie reviews are scraped from two movie review websites, Sinefil.com and Beyazperde.com. Here, we used 2 labels but for a total challenge of 10 label classification can be found under this dataset's [stand alone HF repo](https://huggingface.co/datasets/turkish-nlp-suite/BuyukSinema).
This dataset is also a part of [TrGLUE benchmark](https://huggingface.co/datasets/turkish-nlp-suite/TrGLUE) under the task name **sst2**.
**hate** This dataset is the [Turkish Hate Map](https://huggingface.co/datasets/turkish-nlp-suite/TurkishHateMap), scraped from Eksisozluk.com and including 4 labels: offense, hate, neutral and civilized.
### Dataset statistics
Here are the dataset sizes and number of labels:
| Subset | size | num labels |
|---|---|---|
| e-commerce | 103K | 5 |
| movies | 78K | 2|
| hate | 52K| 4 |
### Benchmarking
We benchmarked BERTurk on all of our datasets.
All benchmarking scripts can be found under the dedicated [SentiTurca Github repo](https://github.com/turkish-nlp-suite/SentiTurca).
| Subset | metrics | success |
|---|---|---|
| movies | Matthews corr. | 0.67 |
| e-commerce | acc./F1 | 0.66/0.64 |
| hate | acc./F1 | 0.61/0.58 |
As one sees, hate dataset is quite challenging. For a full critique of the benchmark please visit our [research paper]().
### Citation
Coming soon!
|