# DeepSparse | |
This page covers how to use the [DeepSparse](https://github.com/neuralmagic/deepsparse) inference runtime within LangChain. | |
It is broken into two parts: installation and setup, and then examples of DeepSparse usage. | |
## Installation and Setup | |
- Install the Python package with `pip install deepsparse` | |
- Choose a [SparseZoo model](https://sparsezoo.neuralmagic.com/?useCase=text_generation) or export a support model to ONNX [using Optimum](https://github.com/neuralmagic/notebooks/blob/main/notebooks/opt-text-generation-deepsparse-quickstart/OPT_Text_Generation_DeepSparse_Quickstart.ipynb) | |
## LLMs | |
There exists a DeepSparse LLM wrapper, which you can access with: | |
```python | |
from langchain_community.llms import DeepSparse | |
``` | |
It provides a unified interface for all models: | |
```python | |
llm = DeepSparse(model='zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none') | |
print(llm.invoke('def fib():')) | |
``` | |
Additional parameters can be passed using the `config` parameter: | |
```python | |
config = {'max_generated_tokens': 256} | |
llm = DeepSparse(model='zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none', config=config) | |
``` | |