|
|
|
|
|
>[Cohere](https://cohere.ai/about) is a Canadian startup that provides natural language processing models |
|
> that help companies improve human-machine interactions. |
|
|
|
|
|
- Install the Python SDK : |
|
```bash |
|
pip install langchain-cohere |
|
``` |
|
|
|
Get a [Cohere api key](https://dashboard.cohere.ai/) and set it as an environment variable (`COHERE_API_KEY`) |
|
|
|
|
|
|
|
|API|description|Endpoint docs|Import|Example usage| |
|
|---|---|---|---|---| |
|
|Chat|Build chat bots|[chat](https://docs.cohere.com/reference/chat)|`from langchain_cohere import ChatCohere`|[cohere.ipynb](/docs/integrations/chat/cohere)| |
|
|LLM|Generate text|[generate](https://docs.cohere.com/reference/generate)|`from langchain_cohere.llms import Cohere`|[cohere.ipynb](/docs/integrations/llms/cohere)| |
|
|RAG Retriever|Connect to external data sources|[chat + rag](https://docs.cohere.com/reference/chat)|`from langchain.retrievers import CohereRagRetriever`|[cohere.ipynb](/docs/integrations/retrievers/cohere)| |
|
|Text Embedding|Embed strings to vectors|[embed](https://docs.cohere.com/reference/embed)|`from langchain_cohere import CohereEmbeddings`|[cohere.ipynb](/docs/integrations/text_embedding/cohere)| |
|
|Rerank Retriever|Rank strings based on relevance|[rerank](https://docs.cohere.com/reference/rerank)|`from langchain.retrievers.document_compressors import CohereRerank`|[cohere.ipynb](/docs/integrations/retrievers/cohere-reranker)| |
|
|
|
|
|
|
|
|
|
|
|
```python |
|
from langchain_cohere import ChatCohere |
|
from langchain_core.messages import HumanMessage |
|
chat = ChatCohere() |
|
messages = [HumanMessage(content="knock knock")] |
|
print(chat.invoke(messages)) |
|
``` |
|
|
|
Usage of the Cohere [chat model](/docs/integrations/chat/cohere) |
|
|
|
|
|
|
|
|
|
```python |
|
from langchain_cohere.llms import Cohere |
|
|
|
llm = Cohere() |
|
print(llm.invoke("Come up with a pet name")) |
|
``` |
|
|
|
Usage of the Cohere (legacy) [LLM model](/docs/integrations/llms/cohere) |
|
|
|
|
|
```python |
|
from langchain_cohere import ChatCohere |
|
from langchain_core.messages import ( |
|
HumanMessage, |
|
ToolMessage, |
|
) |
|
from langchain_core.tools import tool |
|
|
|
@tool |
|
def magic_function(number: int) -> int: |
|
"""Applies a magic operation to an integer |
|
|
|
Args: |
|
number: Number to have magic operation performed on |
|
""" |
|
return number + 10 |
|
|
|
def invoke_tools(tool_calls, messages): |
|
for tool_call in tool_calls: |
|
selected_tool = {"magic_function":magic_function}[ |
|
tool_call["name"].lower() |
|
] |
|
tool_output = selected_tool.invoke(tool_call["args"]) |
|
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"])) |
|
return messages |
|
|
|
tools = [magic_function] |
|
|
|
llm = ChatCohere() |
|
llm_with_tools = llm.bind_tools(tools=tools) |
|
messages = [ |
|
HumanMessage( |
|
content="What is the value of magic_function(2)?" |
|
) |
|
] |
|
|
|
res = llm_with_tools.invoke(messages) |
|
while res.tool_calls: |
|
messages.append(res) |
|
messages = invoke_tools(res.tool_calls, messages) |
|
res = llm_with_tools.invoke(messages) |
|
|
|
print(res.content) |
|
``` |
|
Tool calling with Cohere LLM can be done by binding the necessary tools to the llm as seen above. |
|
An alternative, is to support multi hop tool calling with the ReAct agent as seen below. |
|
|
|
|
|
|
|
The agent is based on the paper |
|
[ReAct: Synergizing Reasoning and Acting in Language Models](https://arxiv.org/abs/2210.03629). |
|
|
|
```python |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_cohere import ChatCohere, create_cohere_react_agent |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain.agents import AgentExecutor |
|
|
|
llm = ChatCohere() |
|
|
|
internet_search = TavilySearchResults(max_results=4) |
|
internet_search.name = "internet_search" |
|
internet_search.description = "Route a user query to the internet" |
|
|
|
prompt = ChatPromptTemplate.from_template("{input}") |
|
|
|
agent = create_cohere_react_agent( |
|
llm, |
|
[internet_search], |
|
prompt |
|
) |
|
|
|
agent_executor = AgentExecutor(agent=agent, tools=[internet_search], verbose=True) |
|
|
|
agent_executor.invoke({ |
|
"input": "In what year was the company that was founded as Sound of Music added to the S&P 500?", |
|
}) |
|
``` |
|
The ReAct agent can be used to call multiple tools in sequence. |
|
|
|
|
|
|
|
```python |
|
from langchain_cohere import ChatCohere |
|
from langchain.retrievers import CohereRagRetriever |
|
from langchain_core.documents import Document |
|
|
|
rag = CohereRagRetriever(llm=ChatCohere()) |
|
print(rag.invoke("What is cohere ai?")) |
|
``` |
|
|
|
Usage of the Cohere [RAG Retriever](/docs/integrations/retrievers/cohere) |
|
|
|
|
|
|
|
```python |
|
from langchain_cohere import CohereEmbeddings |
|
|
|
embeddings = CohereEmbeddings(model="embed-english-light-v3.0") |
|
print(embeddings.embed_documents(["This is a test document."])) |
|
``` |
|
|
|
Usage of the Cohere [Text Embeddings model](/docs/integrations/text_embedding/cohere) |
|
|
|
|
|
|
|
Usage of the Cohere [Reranker](/docs/integrations/retrievers/cohere-reranker) |