File size: 1,254 Bytes
8dc9a1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# TigerGraph
>[TigerGraph](https://www.tigergraph.com/tigergraph-db/) is a natively distributed and high-performance graph database.
> The storage of data in a graph format of vertices and edges leads to rich relationships,
> ideal for grouding LLM responses.
A big example of the `TigerGraph` and `LangChain` integration [presented here](https://github.com/tigergraph/graph-ml-notebooks/blob/main/applications/large_language_models/TigerGraph_LangChain_Demo.ipynb).
## Installation and Setup
Follow instructions [how to connect to the `TigerGraph` database](https://docs.tigergraph.com/pytigergraph/current/getting-started/connection).
Install the Python SDK:
```bash
pip install pyTigerGraph
```
## Example
To utilize the `TigerGraph InquiryAI` functionality, you can import `TigerGraph` from `langchain_community.graphs`.
```python
import pyTigerGraph as tg
conn = tg.TigerGraphConnection(host="DATABASE_HOST_HERE", graphname="GRAPH_NAME_HERE", username="USERNAME_HERE", password="PASSWORD_HERE")
### ==== CONFIGURE INQUIRYAI HOST ====
conn.ai.configureInquiryAIHost("INQUIRYAI_HOST_HERE")
from langchain_community.graphs import TigerGraph
graph = TigerGraph(conn)
result = graph.query("How many servers are there?")
print(result)
```
|