Last commit not found
# Copyright 2023 Together Computer | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""RedPajama: An Open-Source, Clean-Room 1.2 Trillion Token Dataset.""" | |
import json | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_DESCRIPTION = """\ | |
RedPajama is a clean-room, fully open-source implementation of the LLaMa dataset. | |
""" | |
_URL_LISTS = { | |
"arxiv": "urls/arxiv.txt", | |
"book": "urls/book.txt", | |
"c4": "urls/c4.txt", | |
"common_crawl": "urls/common_crawl.txt", | |
"github": "urls/github.txt", | |
"stackexchange": "urls/stackexchange.txt", | |
"wikipedia": "urls/wikipedia.txt", | |
} | |
class RedPajama1TConfig(datasets.BuilderConfig): | |
"""BuilderConfig for RedPajama sample.""" | |
def __init__(self, *args, subsets, **kwargs): | |
"""BuilderConfig for RedPajama. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(RedPajama1TConfig, self).__init__(**kwargs) | |
self.subsets = subsets | |
class RedPajama1T(datasets.GeneratorBasedBuilder): | |
"""RedPajama: Reproducing the LLaMA training dataset of over 1.2 trillion tokens. Version 1.0.0.""" | |
BUILDER_CONFIGS = [ | |
RedPajama1TConfig( | |
subsets = list(_URL_LISTS.keys()), | |
name="plain_text", | |
version=datasets.Version("1.0.0", ""), | |
description="Plain text", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"meta": datasets.Value("string"), | |
"red_pajama_subset": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
) | |
def _split_generators(self, dl_manager): | |
url_lists = dl_manager.download_and_extract({ | |
subset: _URL_LISTS[subset] for subset in self.config.subsets | |
}) | |
urls = {} | |
for subset, url_list in url_lists.items(): | |
with open(url_list, encoding="utf-8") as f: | |
urls[subset] = [line.strip() for line in f][:1] | |
downloaded_files = dl_manager.download(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs = { | |
"files": { | |
subset: downloaded_files[subset] | |
for subset in self.config.subsets | |
} | |
} | |
) | |
] | |
def _generate_examples(self, files): | |
"""This function returns the examples in the raw (text) form.""" | |
key = 0 | |
for subset in files: | |
if subset == "common_crawl": | |
import zstandard as zstd | |
for path in files[subset]: | |
with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f: | |
for i, row in enumerate(f): | |
data = json.loads(row) | |
text = data["text"] | |
del data["text"] | |
yield key, { | |
"text": text, | |
"meta": json.dumps(data), | |
"red_pajama_subset": subset, | |
} | |
key += 1 | |
else: | |
for path in files[subset]: | |
with open(path, encoding="utf-8") as f: | |
for i, row in enumerate(f): | |
data = json.loads(row) | |
yield key, { | |
"text": data["text"], | |
"meta": data["meta"], | |
"red_pajama_subset": subset, | |
} | |
key += 1 | |