trminhnam20082002 commited on
Commit
90c562e
·
1 Parent(s): 3ab7660
Files changed (1) hide show
  1. VieGLUE.py +7 -75
VieGLUE.py CHANGED
@@ -99,80 +99,7 @@ _DOWNLOAD_URL = {
99
  "validation": [os.path.join("data", "wnli", "validation.tar.gz")],
100
  },
101
  }
102
- # VieGLUEConfig(
103
- # name="cola",
104
- # description=textwrap.dedent(
105
- # """\
106
- # The Corpus of Linguistic Acceptability consists of English
107
- # acceptability judgments drawn from books and journal articles on
108
- # linguistic theory. Each example is a sequence of words annotated
109
- # with whether it is a grammatical English sentence."""
110
- # ),
111
- # text_features={"sentence": "sentence"},
112
- # label_classes=["unacceptable", "acceptable"],
113
- # label_column="is_acceptable",
114
- # data_url="https://dl.fbaipublicfiles.com/glue/data/CoLA.zip",
115
- # data_dir="CoLA",
116
- # citation=textwrap.dedent(
117
- # """\
118
- # @article{warstadt2018neural,
119
- # title={Neural Network Acceptability Judgments},
120
- # author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
121
- # journal={arXiv preprint arXiv:1805.12471},
122
- # year={2018}
123
- # }"""
124
- # ),
125
- # url="https://nyu-mll.github.io/CoLA/",
126
- # ),
127
- # VieGLUEConfig(
128
- # name="mnli",
129
- # description=textwrap.dedent(
130
- # """\
131
- # The Multi-Genre Natural Language Inference Corpus is a crowdsourced
132
- # collection of sentence pairs with textual entailment annotations. Given a premise sentence
133
- # and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
134
- # (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
135
- # gathered from ten different sources, including transcribed speech, fiction, and government reports.
136
- # We use the standard test set, for which we obtained private labels from the authors, and evaluate
137
- # on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
138
- # the SNLI corpus as 550k examples of auxiliary training data."""
139
- # ),
140
- # text_features={
141
- # "premise": "sentence1",
142
- # "hypothesis": "sentence2",
143
- # },
144
- # label_classes=["entailment", "neutral", "contradiction"],
145
- # label_column="gold_label",
146
- # data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip",
147
- # data_dir="MNLI",
148
- # citation=textwrap.dedent(
149
- # """\
150
- # @InProceedings{N18-1101,
151
- # author = "Williams, Adina
152
- # and Nangia, Nikita
153
- # and Bowman, Samuel",
154
- # title = "A Broad-Coverage Challenge Corpus for
155
- # Sentence Understanding through Inference",
156
- # booktitle = "Proceedings of the 2018 Conference of
157
- # the North American Chapter of the
158
- # Association for Computational Linguistics:
159
- # Human Language Technologies, Volume 1 (Long
160
- # Papers)",
161
- # year = "2018",
162
- # publisher = "Association for Computational Linguistics",
163
- # pages = "1112--1122",
164
- # location = "New Orleans, Louisiana",
165
- # url = "http://aclweb.org/anthology/N18-1101"
166
- # }
167
- # @article{bowman2015large,
168
- # title={A large annotated corpus for learning natural language inference},
169
- # author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
170
- # journal={arXiv preprint arXiv:1508.05326},
171
- # year={2015}
172
- # }"""
173
- # ),
174
- # url="http://www.nyu.edu/projects/bowman/multinli/",
175
- # ),
176
  SUBSET_KWARGS = {
177
  "ax": {
178
  "name": "ax",
@@ -564,6 +491,7 @@ class VNExpress(datasets.GeneratorBasedBuilder):
564
 
565
  def _generate_examples(self, files, urls, stage, config):
566
  # id_ = 0
 
567
 
568
  if not isinstance(files, list):
569
  files = [files]
@@ -580,4 +508,8 @@ class VNExpress(datasets.GeneratorBasedBuilder):
580
  print(f"Loaded {len(all_samples)} samples from {file_path}")
581
  print(f"Sample: {all_samples[0]}")
582
  for sample in all_samples:
583
- yield sample
 
 
 
 
 
99
  "validation": [os.path.join("data", "wnli", "validation.tar.gz")],
100
  },
101
  }
102
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  SUBSET_KWARGS = {
104
  "ax": {
105
  "name": "ax",
 
491
 
492
  def _generate_examples(self, files, urls, stage, config):
493
  # id_ = 0
494
+ features = config.text_features
495
 
496
  if not isinstance(files, list):
497
  files = [files]
 
508
  print(f"Loaded {len(all_samples)} samples from {file_path}")
509
  print(f"Sample: {all_samples[0]}")
510
  for sample in all_samples:
511
+ yield {
512
+ "idx": sample["idx"],
513
+ "label": sample["label"],
514
+ **{f: sample[f] for f in features},
515
+ }