Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
document-retrieval
Size:
100K - 1M
ArXiv:
Tags:
code
License:
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems""" | |
| import gzip | |
| import pickle | |
| import textwrap | |
| import datasets | |
| _CITATION = """\ | |
| @misc{liu2023repobench, | |
| title={RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems}, | |
| author={Tianyang Liu and Canwen Xu and Julian McAuley}, | |
| year={2023}, | |
| eprint={2306.03091}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CL} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| RepoBench is a dataset that benchmarks repository-level code auto-completion systems. | |
| RepoBench-C denotes RepoBench for code completion, | |
| which is subtask of RepoBench for next-line code prediction given both cross-file and in-file context. | |
| """ | |
| _HOMEPAGE = "https://github.com/Leolty/repobench" | |
| _LICENSE = "Apache License 2.0" | |
| _URLs = { | |
| "python_cff": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/python/cross_file_first.gz", | |
| "python_cfr": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/python/cross_file_random.gz", | |
| "python_if": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/python/in_file.gz", | |
| "java_cff": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/java/cross_file_first.gz", | |
| "java_cfr": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/java/cross_file_random.gz", | |
| "java_if": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/java/in_file.gz" | |
| } | |
| def construct_prompt(data_point:dict, language:str): | |
| if language == "python": | |
| path = f"# Path: {data_point['file_path']}" | |
| elif language == "java": | |
| path = f"// Path: {data_point['file_path']}" | |
| prompt = f"""{data_point['context']} | |
| {path} | |
| {data_point['import_statement']} | |
| {data_point['code']}""" | |
| return prompt | |
| class RepoBenchC(datasets.GeneratorBasedBuilder): | |
| """RepoBench""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="python_cff", | |
| description=textwrap.dedent( | |
| """ | |
| cff: cross_file_first -> mask the the line that a cross-file module is first used | |
| """ | |
| ) | |
| ), | |
| datasets.BuilderConfig( | |
| name="python_cfr", | |
| description=textwrap.dedent( | |
| """ | |
| cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time) | |
| """ | |
| ) | |
| ), | |
| datasets.BuilderConfig( | |
| name="python_if", | |
| description=textwrap.dedent( | |
| """ | |
| if: in_file -> mask a random line with no cross-file module | |
| """ | |
| ) | |
| ), | |
| datasets.BuilderConfig( | |
| name="java_cff", | |
| description=textwrap.dedent( | |
| """ | |
| cff: cross_file_first -> mask the the line that a cross-file module is first used | |
| """ | |
| ) | |
| ), | |
| datasets.BuilderConfig( | |
| name="java_cfr", | |
| description=textwrap.dedent( | |
| """ | |
| cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time) | |
| """ | |
| ) | |
| ), | |
| datasets.BuilderConfig( | |
| name="java_if", | |
| description=textwrap.dedent( | |
| """ | |
| if: in_file -> mask a random line with no cross-file module | |
| """ | |
| ) | |
| ) | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "repo_name": datasets.Value("string"), | |
| "file_path": datasets.Value("string"), | |
| "context": datasets.Value("string"), | |
| "import_statement": datasets.Value("string"), | |
| "code": datasets.Value("string"), | |
| "prompt": datasets.Value("string"), | |
| "next_line": datasets.Value("string") | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| config_urls = _URLs[self.config.name] | |
| data_dir = dl_manager.download(config_urls) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split("train"), | |
| gen_kwargs={"data_dir": data_dir, "split": "train"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split("dev"), | |
| gen_kwargs={"data_dir": data_dir, "split": "dev"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split("test"), | |
| gen_kwargs={"data_dir": data_dir, "split": "test"}, | |
| ) | |
| ] | |
| def _generate_examples(self, data_dir, split): | |
| """ Yields examples. """ | |
| with gzip.open(data_dir, "rb") as f: | |
| data = pickle.load(f) | |
| for i, example in enumerate(data[split]): | |
| prompt = construct_prompt(example, self.config.name.split("_")[0]) | |
| yield i, { | |
| "repo_name": example["repo_name"], | |
| "file_path": example["file_path"], | |
| "context": example["context"], | |
| "import_statement": example["import_statement"], | |
| "code": example["code"], | |
| "prompt": prompt, | |
| "next_line": example["next_line"] | |
| } | |